x uchun yechish
x=\frac{4y}{z}
y\neq 0\text{ and }z\neq 0
y uchun yechish
y=\frac{xz}{4}
z\neq 0\text{ and }x\neq 0
Baham ko'rish
Klipbordga nusxa olish
zx=y\times 4
Tenglamaning ikkala tarafini yz ga, y,z ning eng kichik karralisiga ko‘paytiring.
zx=4y
Tenglama standart shaklda.
\frac{zx}{z}=\frac{4y}{z}
Ikki tarafini z ga bo‘ling.
x=\frac{4y}{z}
z ga bo'lish z ga ko'paytirishni bekor qiladi.
zx=y\times 4
y qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini yz ga, y,z ning eng kichik karralisiga ko‘paytiring.
y\times 4=zx
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
4y=xz
Tenglama standart shaklda.
\frac{4y}{4}=\frac{xz}{4}
Ikki tarafini 4 ga bo‘ling.
y=\frac{xz}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
y=\frac{xz}{4}\text{, }y\neq 0
y qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}