Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x+2\right)x+\left(x-3\right)\left(2x+1\right)=\left(x+2\right)\times 3
x qiymati -2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x+2\right) ga, x-3,x+2 ning eng kichik karralisiga ko‘paytiring.
x^{2}+2x+\left(x-3\right)\left(2x+1\right)=\left(x+2\right)\times 3
x+2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+2x+2x^{2}-5x-3=\left(x+2\right)\times 3
x-3 ga 2x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}+2x-5x-3=\left(x+2\right)\times 3
3x^{2} ni olish uchun x^{2} va 2x^{2} ni birlashtirish.
3x^{2}-3x-3=\left(x+2\right)\times 3
-3x ni olish uchun 2x va -5x ni birlashtirish.
3x^{2}-3x-3=3x+6
x+2 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-3x-3-3x=6
Ikkala tarafdan 3x ni ayirish.
3x^{2}-6x-3=6
-6x ni olish uchun -3x va -3x ni birlashtirish.
3x^{2}-6x-3-6=0
Ikkala tarafdan 6 ni ayirish.
3x^{2}-6x-9=0
-9 olish uchun -3 dan 6 ni ayirish.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\left(-9\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -6 ni b va -9 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3\left(-9\right)}}{2\times 3}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36-12\left(-9\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2\times 3}
-12 ni -9 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{144}}{2\times 3}
36 ni 108 ga qo'shish.
x=\frac{-\left(-6\right)±12}{2\times 3}
144 ning kvadrat ildizini chiqarish.
x=\frac{6±12}{2\times 3}
-6 ning teskarisi 6 ga teng.
x=\frac{6±12}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{18}{6}
x=\frac{6±12}{6} tenglamasini yeching, bunda ± musbat. 6 ni 12 ga qo'shish.
x=3
18 ni 6 ga bo'lish.
x=-\frac{6}{6}
x=\frac{6±12}{6} tenglamasini yeching, bunda ± manfiy. 6 dan 12 ni ayirish.
x=-1
-6 ni 6 ga bo'lish.
x=3 x=-1
Tenglama yechildi.
x=-1
x qiymati 3 teng bo‘lmaydi.
\left(x+2\right)x+\left(x-3\right)\left(2x+1\right)=\left(x+2\right)\times 3
x qiymati -2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x+2\right) ga, x-3,x+2 ning eng kichik karralisiga ko‘paytiring.
x^{2}+2x+\left(x-3\right)\left(2x+1\right)=\left(x+2\right)\times 3
x+2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+2x+2x^{2}-5x-3=\left(x+2\right)\times 3
x-3 ga 2x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}+2x-5x-3=\left(x+2\right)\times 3
3x^{2} ni olish uchun x^{2} va 2x^{2} ni birlashtirish.
3x^{2}-3x-3=\left(x+2\right)\times 3
-3x ni olish uchun 2x va -5x ni birlashtirish.
3x^{2}-3x-3=3x+6
x+2 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-3x-3-3x=6
Ikkala tarafdan 3x ni ayirish.
3x^{2}-6x-3=6
-6x ni olish uchun -3x va -3x ni birlashtirish.
3x^{2}-6x=6+3
3 ni ikki tarafga qo’shing.
3x^{2}-6x=9
9 olish uchun 6 va 3'ni qo'shing.
\frac{3x^{2}-6x}{3}=\frac{9}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\left(-\frac{6}{3}\right)x=\frac{9}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-2x=\frac{9}{3}
-6 ni 3 ga bo'lish.
x^{2}-2x=3
9 ni 3 ga bo'lish.
x^{2}-2x+1=3+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=4
3 ni 1 ga qo'shish.
\left(x-1\right)^{2}=4
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=2 x-1=-2
Qisqartirish.
x=3 x=-1
1 ni tenglamaning ikkala tarafiga qo'shish.
x=-1
x qiymati 3 teng bo‘lmaydi.