n uchun yechish
n=\frac{24\sqrt{3}+9}{61}\approx 0,829003596
Baham ko'rish
Klipbordga nusxa olish
8n=\left(n+3\right)\sqrt{3}
n qiymati -3 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 8\left(n+3\right) ga, 3+n,8 ning eng kichik karralisiga ko‘paytiring.
8n=n\sqrt{3}+3\sqrt{3}
n+3 ga \sqrt{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8n-n\sqrt{3}=3\sqrt{3}
Ikkala tarafdan n\sqrt{3} ni ayirish.
-\sqrt{3}n+8n=3\sqrt{3}
Shartlarni qayta saralash.
\left(-\sqrt{3}+8\right)n=3\sqrt{3}
n'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(8-\sqrt{3}\right)n=3\sqrt{3}
Tenglama standart shaklda.
\frac{\left(8-\sqrt{3}\right)n}{8-\sqrt{3}}=\frac{3\sqrt{3}}{8-\sqrt{3}}
Ikki tarafini -\sqrt{3}+8 ga bo‘ling.
n=\frac{3\sqrt{3}}{8-\sqrt{3}}
-\sqrt{3}+8 ga bo'lish -\sqrt{3}+8 ga ko'paytirishni bekor qiladi.
n=\frac{24\sqrt{3}+9}{61}
3\sqrt{3} ni -\sqrt{3}+8 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}