\frac{ A }{ { x }^{ } } + \frac{ B }{ { y }^{ 2 } } = 9
A uchun yechish
A=-\frac{Bx}{y^{2}}+9x
x\neq 0\text{ and }y\neq 0
B uchun yechish
B=-\frac{\left(A-9x\right)y^{2}}{x}
x\neq 0\text{ and }y\neq 0
Grafik
Baham ko'rish
Klipbordga nusxa olish
y^{2}A+xB=9xy^{2}
Tenglamaning ikkala tarafini xy^{2} ga, x^{1},y^{2} ning eng kichik karralisiga ko‘paytiring.
y^{2}A=9xy^{2}-xB
Ikkala tarafdan xB ni ayirish.
y^{2}A=9xy^{2}-Bx
Tenglama standart shaklda.
\frac{y^{2}A}{y^{2}}=\frac{x\left(9y^{2}-B\right)}{y^{2}}
Ikki tarafini y^{2} ga bo‘ling.
A=\frac{x\left(9y^{2}-B\right)}{y^{2}}
y^{2} ga bo'lish y^{2} ga ko'paytirishni bekor qiladi.
A=-\frac{Bx}{y^{2}}+9x
x\left(9y^{2}-B\right) ni y^{2} ga bo'lish.
y^{2}A+xB=9xy^{2}
Tenglamaning ikkala tarafini xy^{2} ga, x^{1},y^{2} ning eng kichik karralisiga ko‘paytiring.
xB=9xy^{2}-y^{2}A
Ikkala tarafdan y^{2}A ni ayirish.
Bx=9xy^{2}-Ay^{2}
Shartlarni qayta saralash.
xB=9xy^{2}-Ay^{2}
Tenglama standart shaklda.
\frac{xB}{x}=\frac{\left(9x-A\right)y^{2}}{x}
Ikki tarafini x ga bo‘ling.
B=\frac{\left(9x-A\right)y^{2}}{x}
x ga bo'lish x ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}