x uchun yechish
x=\frac{\sqrt{649}}{24}+\frac{7}{8}\approx 1,936478267
x=-\frac{\sqrt{649}}{24}+\frac{7}{8}\approx -0,186478267
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(4x-7\right)\left(9x+7\right)=\left(7x-9\right)\left(4-0x\right)
x qiymati \frac{9}{7},\frac{7}{4} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(4x-7\right)\left(7x-9\right) ga, 7x-9,4x-7 ning eng kichik karralisiga ko‘paytiring.
36x^{2}-35x-49=\left(7x-9\right)\left(4-0x\right)
4x-7 ga 9x+7 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
36x^{2}-35x-49=\left(7x-9\right)\left(4-0\right)
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
36x^{2}-35x-49=\left(7x-9\right)\times 4
4 olish uchun 4 dan 0 ni ayirish.
36x^{2}-35x-49=28x-36
7x-9 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36x^{2}-35x-49-28x=-36
Ikkala tarafdan 28x ni ayirish.
36x^{2}-63x-49=-36
-63x ni olish uchun -35x va -28x ni birlashtirish.
36x^{2}-63x-49+36=0
36 ni ikki tarafga qo’shing.
36x^{2}-63x-13=0
-13 olish uchun -49 va 36'ni qo'shing.
x=\frac{-\left(-63\right)±\sqrt{\left(-63\right)^{2}-4\times 36\left(-13\right)}}{2\times 36}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 36 ni a, -63 ni b va -13 ni c bilan almashtiring.
x=\frac{-\left(-63\right)±\sqrt{3969-4\times 36\left(-13\right)}}{2\times 36}
-63 kvadratini chiqarish.
x=\frac{-\left(-63\right)±\sqrt{3969-144\left(-13\right)}}{2\times 36}
-4 ni 36 marotabaga ko'paytirish.
x=\frac{-\left(-63\right)±\sqrt{3969+1872}}{2\times 36}
-144 ni -13 marotabaga ko'paytirish.
x=\frac{-\left(-63\right)±\sqrt{5841}}{2\times 36}
3969 ni 1872 ga qo'shish.
x=\frac{-\left(-63\right)±3\sqrt{649}}{2\times 36}
5841 ning kvadrat ildizini chiqarish.
x=\frac{63±3\sqrt{649}}{2\times 36}
-63 ning teskarisi 63 ga teng.
x=\frac{63±3\sqrt{649}}{72}
2 ni 36 marotabaga ko'paytirish.
x=\frac{3\sqrt{649}+63}{72}
x=\frac{63±3\sqrt{649}}{72} tenglamasini yeching, bunda ± musbat. 63 ni 3\sqrt{649} ga qo'shish.
x=\frac{\sqrt{649}}{24}+\frac{7}{8}
63+3\sqrt{649} ni 72 ga bo'lish.
x=\frac{63-3\sqrt{649}}{72}
x=\frac{63±3\sqrt{649}}{72} tenglamasini yeching, bunda ± manfiy. 63 dan 3\sqrt{649} ni ayirish.
x=-\frac{\sqrt{649}}{24}+\frac{7}{8}
63-3\sqrt{649} ni 72 ga bo'lish.
x=\frac{\sqrt{649}}{24}+\frac{7}{8} x=-\frac{\sqrt{649}}{24}+\frac{7}{8}
Tenglama yechildi.
\left(4x-7\right)\left(9x+7\right)=\left(7x-9\right)\left(4-0x\right)
x qiymati \frac{9}{7},\frac{7}{4} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(4x-7\right)\left(7x-9\right) ga, 7x-9,4x-7 ning eng kichik karralisiga ko‘paytiring.
36x^{2}-35x-49=\left(7x-9\right)\left(4-0x\right)
4x-7 ga 9x+7 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
36x^{2}-35x-49=\left(7x-9\right)\left(4-0\right)
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
36x^{2}-35x-49=\left(7x-9\right)\times 4
4 olish uchun 4 dan 0 ni ayirish.
36x^{2}-35x-49=28x-36
7x-9 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36x^{2}-35x-49-28x=-36
Ikkala tarafdan 28x ni ayirish.
36x^{2}-63x-49=-36
-63x ni olish uchun -35x va -28x ni birlashtirish.
36x^{2}-63x=-36+49
49 ni ikki tarafga qo’shing.
36x^{2}-63x=13
13 olish uchun -36 va 49'ni qo'shing.
\frac{36x^{2}-63x}{36}=\frac{13}{36}
Ikki tarafini 36 ga bo‘ling.
x^{2}+\left(-\frac{63}{36}\right)x=\frac{13}{36}
36 ga bo'lish 36 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{7}{4}x=\frac{13}{36}
\frac{-63}{36} ulushini 9 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{7}{4}x+\left(-\frac{7}{8}\right)^{2}=\frac{13}{36}+\left(-\frac{7}{8}\right)^{2}
-\frac{7}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{8} olish uchun. Keyin, -\frac{7}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{13}{36}+\frac{49}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{8} kvadratini chiqarish.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{649}{576}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{13}{36} ni \frac{49}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{7}{8}\right)^{2}=\frac{649}{576}
x^{2}-\frac{7}{4}x+\frac{49}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{8}\right)^{2}}=\sqrt{\frac{649}{576}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{8}=\frac{\sqrt{649}}{24} x-\frac{7}{8}=-\frac{\sqrt{649}}{24}
Qisqartirish.
x=\frac{\sqrt{649}}{24}+\frac{7}{8} x=-\frac{\sqrt{649}}{24}+\frac{7}{8}
\frac{7}{8} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}