Baholash
4\sqrt{2}+8\approx 13,656854249
Baham ko'rish
Klipbordga nusxa olish
\frac{8}{2-\sqrt{2}}
4 ning kvadrat ildizini hisoblab, 2 natijaga ega bo‘ling.
\frac{8\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}
\frac{8}{2-\sqrt{2}} maxrajini 2+\sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{8\left(2+\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}
Hisoblang: \left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8\left(2+\sqrt{2}\right)}{4-2}
2 kvadratini chiqarish. \sqrt{2} kvadratini chiqarish.
\frac{8\left(2+\sqrt{2}\right)}{2}
2 olish uchun 4 dan 2 ni ayirish.
4\left(2+\sqrt{2}\right)
4\left(2+\sqrt{2}\right) ni olish uchun 8\left(2+\sqrt{2}\right) ni 2 ga bo‘ling.
8+4\sqrt{2}
4 ga 2+\sqrt{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}