a uchun yechish
a=\frac{76}{\left(15-h\right)^{3}+k}
h\neq \sqrt[3]{k}+15
h uchun yechish
h=-\sqrt[3]{-k+\frac{76}{a}}+15
a\neq 0
Baham ko'rish
Klipbordga nusxa olish
76=a\left(15-h\right)^{3}+ak
a qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini a ga ko'paytirish.
76=a\left(3375-675h+45h^{2}-h^{3}\right)+ak
\left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} binom teoremasini \left(15-h\right)^{3} kengaytirilishi uchun ishlating.
76=3375a-675ah+45ah^{2}-ah^{3}+ak
a ga 3375-675h+45h^{2}-h^{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3375a-675ah+45ah^{2}-ah^{3}+ak=76
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\left(3375-675h+45h^{2}-h^{3}+k\right)a=76
a'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(3375+k-675h+45h^{2}-h^{3}\right)a=76
Tenglama standart shaklda.
\frac{\left(3375+k-675h+45h^{2}-h^{3}\right)a}{3375+k-675h+45h^{2}-h^{3}}=\frac{76}{3375+k-675h+45h^{2}-h^{3}}
Ikki tarafini 3375-675h+45h^{2}-h^{3}+k ga bo‘ling.
a=\frac{76}{3375+k-675h+45h^{2}-h^{3}}
3375-675h+45h^{2}-h^{3}+k ga bo'lish 3375-675h+45h^{2}-h^{3}+k ga ko'paytirishni bekor qiladi.
a=\frac{76}{3375+k-675h+45h^{2}-h^{3}}\text{, }a\neq 0
a qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}