x uchun yechish
x = \frac{7 \sqrt{401} + 7}{4} \approx 36,79372269
x=\frac{7-7\sqrt{401}}{4}\approx -33,29372269
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-35\right)\times 70+\left(x+35\right)\times 70=40\left(x-35\right)\left(x+35\right)
x qiymati -35,35 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-35\right)\left(x+35\right) ga, x+35,x-35 ning eng kichik karralisiga ko‘paytiring.
70x-2450+\left(x+35\right)\times 70=40\left(x-35\right)\left(x+35\right)
x-35 ga 70 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
70x-2450+70x+2450=40\left(x-35\right)\left(x+35\right)
x+35 ga 70 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
140x-2450+2450=40\left(x-35\right)\left(x+35\right)
140x ni olish uchun 70x va 70x ni birlashtirish.
140x=40\left(x-35\right)\left(x+35\right)
0 olish uchun -2450 va 2450'ni qo'shing.
140x=\left(40x-1400\right)\left(x+35\right)
40 ga x-35 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
140x=40x^{2}-49000
40x-1400 ga x+35 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
140x-40x^{2}=-49000
Ikkala tarafdan 40x^{2} ni ayirish.
140x-40x^{2}+49000=0
49000 ni ikki tarafga qo’shing.
-40x^{2}+140x+49000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-140±\sqrt{140^{2}-4\left(-40\right)\times 49000}}{2\left(-40\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -40 ni a, 140 ni b va 49000 ni c bilan almashtiring.
x=\frac{-140±\sqrt{19600-4\left(-40\right)\times 49000}}{2\left(-40\right)}
140 kvadratini chiqarish.
x=\frac{-140±\sqrt{19600+160\times 49000}}{2\left(-40\right)}
-4 ni -40 marotabaga ko'paytirish.
x=\frac{-140±\sqrt{19600+7840000}}{2\left(-40\right)}
160 ni 49000 marotabaga ko'paytirish.
x=\frac{-140±\sqrt{7859600}}{2\left(-40\right)}
19600 ni 7840000 ga qo'shish.
x=\frac{-140±140\sqrt{401}}{2\left(-40\right)}
7859600 ning kvadrat ildizini chiqarish.
x=\frac{-140±140\sqrt{401}}{-80}
2 ni -40 marotabaga ko'paytirish.
x=\frac{140\sqrt{401}-140}{-80}
x=\frac{-140±140\sqrt{401}}{-80} tenglamasini yeching, bunda ± musbat. -140 ni 140\sqrt{401} ga qo'shish.
x=\frac{7-7\sqrt{401}}{4}
-140+140\sqrt{401} ni -80 ga bo'lish.
x=\frac{-140\sqrt{401}-140}{-80}
x=\frac{-140±140\sqrt{401}}{-80} tenglamasini yeching, bunda ± manfiy. -140 dan 140\sqrt{401} ni ayirish.
x=\frac{7\sqrt{401}+7}{4}
-140-140\sqrt{401} ni -80 ga bo'lish.
x=\frac{7-7\sqrt{401}}{4} x=\frac{7\sqrt{401}+7}{4}
Tenglama yechildi.
\left(x-35\right)\times 70+\left(x+35\right)\times 70=40\left(x-35\right)\left(x+35\right)
x qiymati -35,35 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-35\right)\left(x+35\right) ga, x+35,x-35 ning eng kichik karralisiga ko‘paytiring.
70x-2450+\left(x+35\right)\times 70=40\left(x-35\right)\left(x+35\right)
x-35 ga 70 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
70x-2450+70x+2450=40\left(x-35\right)\left(x+35\right)
x+35 ga 70 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
140x-2450+2450=40\left(x-35\right)\left(x+35\right)
140x ni olish uchun 70x va 70x ni birlashtirish.
140x=40\left(x-35\right)\left(x+35\right)
0 olish uchun -2450 va 2450'ni qo'shing.
140x=\left(40x-1400\right)\left(x+35\right)
40 ga x-35 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
140x=40x^{2}-49000
40x-1400 ga x+35 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
140x-40x^{2}=-49000
Ikkala tarafdan 40x^{2} ni ayirish.
-40x^{2}+140x=-49000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-40x^{2}+140x}{-40}=-\frac{49000}{-40}
Ikki tarafini -40 ga bo‘ling.
x^{2}+\frac{140}{-40}x=-\frac{49000}{-40}
-40 ga bo'lish -40 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{7}{2}x=-\frac{49000}{-40}
\frac{140}{-40} ulushini 20 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{7}{2}x=1225
-49000 ni -40 ga bo'lish.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=1225+\left(-\frac{7}{4}\right)^{2}
-\frac{7}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{4} olish uchun. Keyin, -\frac{7}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{7}{2}x+\frac{49}{16}=1225+\frac{49}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{4} kvadratini chiqarish.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{19649}{16}
1225 ni \frac{49}{16} ga qo'shish.
\left(x-\frac{7}{4}\right)^{2}=\frac{19649}{16}
x^{2}-\frac{7}{2}x+\frac{49}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{19649}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{4}=\frac{7\sqrt{401}}{4} x-\frac{7}{4}=-\frac{7\sqrt{401}}{4}
Qisqartirish.
x=\frac{7\sqrt{401}+7}{4} x=\frac{7-7\sqrt{401}}{4}
\frac{7}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}