Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\times 60+x\left(x+20\right)\times 15=\left(x+20\right)\times 100
x qiymati -20,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+20\right) ga, x+20,x ning eng kichik karralisiga ko‘paytiring.
x\times 60+\left(x^{2}+20x\right)\times 15=\left(x+20\right)\times 100
x ga x+20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x\times 60+15x^{2}+300x=\left(x+20\right)\times 100
x^{2}+20x ga 15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
360x+15x^{2}=\left(x+20\right)\times 100
360x ni olish uchun x\times 60 va 300x ni birlashtirish.
360x+15x^{2}=100x+2000
x+20 ga 100 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
360x+15x^{2}-100x=2000
Ikkala tarafdan 100x ni ayirish.
260x+15x^{2}=2000
260x ni olish uchun 360x va -100x ni birlashtirish.
260x+15x^{2}-2000=0
Ikkala tarafdan 2000 ni ayirish.
15x^{2}+260x-2000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-260±\sqrt{260^{2}-4\times 15\left(-2000\right)}}{2\times 15}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 15 ni a, 260 ni b va -2000 ni c bilan almashtiring.
x=\frac{-260±\sqrt{67600-4\times 15\left(-2000\right)}}{2\times 15}
260 kvadratini chiqarish.
x=\frac{-260±\sqrt{67600-60\left(-2000\right)}}{2\times 15}
-4 ni 15 marotabaga ko'paytirish.
x=\frac{-260±\sqrt{67600+120000}}{2\times 15}
-60 ni -2000 marotabaga ko'paytirish.
x=\frac{-260±\sqrt{187600}}{2\times 15}
67600 ni 120000 ga qo'shish.
x=\frac{-260±20\sqrt{469}}{2\times 15}
187600 ning kvadrat ildizini chiqarish.
x=\frac{-260±20\sqrt{469}}{30}
2 ni 15 marotabaga ko'paytirish.
x=\frac{20\sqrt{469}-260}{30}
x=\frac{-260±20\sqrt{469}}{30} tenglamasini yeching, bunda ± musbat. -260 ni 20\sqrt{469} ga qo'shish.
x=\frac{2\sqrt{469}-26}{3}
-260+20\sqrt{469} ni 30 ga bo'lish.
x=\frac{-20\sqrt{469}-260}{30}
x=\frac{-260±20\sqrt{469}}{30} tenglamasini yeching, bunda ± manfiy. -260 dan 20\sqrt{469} ni ayirish.
x=\frac{-2\sqrt{469}-26}{3}
-260-20\sqrt{469} ni 30 ga bo'lish.
x=\frac{2\sqrt{469}-26}{3} x=\frac{-2\sqrt{469}-26}{3}
Tenglama yechildi.
x\times 60+x\left(x+20\right)\times 15=\left(x+20\right)\times 100
x qiymati -20,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+20\right) ga, x+20,x ning eng kichik karralisiga ko‘paytiring.
x\times 60+\left(x^{2}+20x\right)\times 15=\left(x+20\right)\times 100
x ga x+20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x\times 60+15x^{2}+300x=\left(x+20\right)\times 100
x^{2}+20x ga 15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
360x+15x^{2}=\left(x+20\right)\times 100
360x ni olish uchun x\times 60 va 300x ni birlashtirish.
360x+15x^{2}=100x+2000
x+20 ga 100 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
360x+15x^{2}-100x=2000
Ikkala tarafdan 100x ni ayirish.
260x+15x^{2}=2000
260x ni olish uchun 360x va -100x ni birlashtirish.
15x^{2}+260x=2000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{15x^{2}+260x}{15}=\frac{2000}{15}
Ikki tarafini 15 ga bo‘ling.
x^{2}+\frac{260}{15}x=\frac{2000}{15}
15 ga bo'lish 15 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{52}{3}x=\frac{2000}{15}
\frac{260}{15} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{52}{3}x=\frac{400}{3}
\frac{2000}{15} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{52}{3}x+\left(\frac{26}{3}\right)^{2}=\frac{400}{3}+\left(\frac{26}{3}\right)^{2}
\frac{52}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{26}{3} olish uchun. Keyin, \frac{26}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{52}{3}x+\frac{676}{9}=\frac{400}{3}+\frac{676}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{26}{3} kvadratini chiqarish.
x^{2}+\frac{52}{3}x+\frac{676}{9}=\frac{1876}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{400}{3} ni \frac{676}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{26}{3}\right)^{2}=\frac{1876}{9}
x^{2}+\frac{52}{3}x+\frac{676}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{26}{3}\right)^{2}}=\sqrt{\frac{1876}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{26}{3}=\frac{2\sqrt{469}}{3} x+\frac{26}{3}=-\frac{2\sqrt{469}}{3}
Qisqartirish.
x=\frac{2\sqrt{469}-26}{3} x=\frac{-2\sqrt{469}-26}{3}
Tenglamaning ikkala tarafidan \frac{26}{3} ni ayirish.