x uchun yechish
x=10\sqrt{2}+20\approx 34,142135624
x=20-10\sqrt{2}\approx 5,857864376
Grafik
Baham ko'rish
Klipbordga nusxa olish
6x^{2}=12x^{2}-5\times 48x+1200
Tenglamaning ikkala tarafini 25 ga, 25,5 ning eng kichik karralisiga ko‘paytiring.
6x^{2}=12x^{2}-240x+1200
-240 hosil qilish uchun -5 va 48 ni ko'paytirish.
6x^{2}-12x^{2}=-240x+1200
Ikkala tarafdan 12x^{2} ni ayirish.
-6x^{2}=-240x+1200
-6x^{2} ni olish uchun 6x^{2} va -12x^{2} ni birlashtirish.
-6x^{2}+240x=1200
240x ni ikki tarafga qo’shing.
-6x^{2}+240x-1200=0
Ikkala tarafdan 1200 ni ayirish.
x=\frac{-240±\sqrt{240^{2}-4\left(-6\right)\left(-1200\right)}}{2\left(-6\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -6 ni a, 240 ni b va -1200 ni c bilan almashtiring.
x=\frac{-240±\sqrt{57600-4\left(-6\right)\left(-1200\right)}}{2\left(-6\right)}
240 kvadratini chiqarish.
x=\frac{-240±\sqrt{57600+24\left(-1200\right)}}{2\left(-6\right)}
-4 ni -6 marotabaga ko'paytirish.
x=\frac{-240±\sqrt{57600-28800}}{2\left(-6\right)}
24 ni -1200 marotabaga ko'paytirish.
x=\frac{-240±\sqrt{28800}}{2\left(-6\right)}
57600 ni -28800 ga qo'shish.
x=\frac{-240±120\sqrt{2}}{2\left(-6\right)}
28800 ning kvadrat ildizini chiqarish.
x=\frac{-240±120\sqrt{2}}{-12}
2 ni -6 marotabaga ko'paytirish.
x=\frac{120\sqrt{2}-240}{-12}
x=\frac{-240±120\sqrt{2}}{-12} tenglamasini yeching, bunda ± musbat. -240 ni 120\sqrt{2} ga qo'shish.
x=20-10\sqrt{2}
-240+120\sqrt{2} ni -12 ga bo'lish.
x=\frac{-120\sqrt{2}-240}{-12}
x=\frac{-240±120\sqrt{2}}{-12} tenglamasini yeching, bunda ± manfiy. -240 dan 120\sqrt{2} ni ayirish.
x=10\sqrt{2}+20
-240-120\sqrt{2} ni -12 ga bo'lish.
x=20-10\sqrt{2} x=10\sqrt{2}+20
Tenglama yechildi.
6x^{2}=12x^{2}-5\times 48x+1200
Tenglamaning ikkala tarafini 25 ga, 25,5 ning eng kichik karralisiga ko‘paytiring.
6x^{2}=12x^{2}-240x+1200
-240 hosil qilish uchun -5 va 48 ni ko'paytirish.
6x^{2}-12x^{2}=-240x+1200
Ikkala tarafdan 12x^{2} ni ayirish.
-6x^{2}=-240x+1200
-6x^{2} ni olish uchun 6x^{2} va -12x^{2} ni birlashtirish.
-6x^{2}+240x=1200
240x ni ikki tarafga qo’shing.
\frac{-6x^{2}+240x}{-6}=\frac{1200}{-6}
Ikki tarafini -6 ga bo‘ling.
x^{2}+\frac{240}{-6}x=\frac{1200}{-6}
-6 ga bo'lish -6 ga ko'paytirishni bekor qiladi.
x^{2}-40x=\frac{1200}{-6}
240 ni -6 ga bo'lish.
x^{2}-40x=-200
1200 ni -6 ga bo'lish.
x^{2}-40x+\left(-20\right)^{2}=-200+\left(-20\right)^{2}
-40 ni bo‘lish, x shartining koeffitsienti, 2 ga -20 olish uchun. Keyin, -20 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-40x+400=-200+400
-20 kvadratini chiqarish.
x^{2}-40x+400=200
-200 ni 400 ga qo'shish.
\left(x-20\right)^{2}=200
x^{2}-40x+400 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-20\right)^{2}}=\sqrt{200}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-20=10\sqrt{2} x-20=-10\sqrt{2}
Qisqartirish.
x=10\sqrt{2}+20 x=20-10\sqrt{2}
20 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}