x uchun yechish
x=-\frac{1}{2}=-0,5
x=1
Grafik
Baham ko'rish
Klipbordga nusxa olish
x\left(5x+1\right)+\left(x+2\right)\left(x-1\right)=2x\left(x+2\right)
x qiymati -2,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+2\right) ga, x+2,x ning eng kichik karralisiga ko‘paytiring.
5x^{2}+x+\left(x+2\right)\left(x-1\right)=2x\left(x+2\right)
x ga 5x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+x+x^{2}+x-2=2x\left(x+2\right)
x+2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
6x^{2}+x+x-2=2x\left(x+2\right)
6x^{2} ni olish uchun 5x^{2} va x^{2} ni birlashtirish.
6x^{2}+2x-2=2x\left(x+2\right)
2x ni olish uchun x va x ni birlashtirish.
6x^{2}+2x-2=2x^{2}+4x
2x ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}+2x-2-2x^{2}=4x
Ikkala tarafdan 2x^{2} ni ayirish.
4x^{2}+2x-2=4x
4x^{2} ni olish uchun 6x^{2} va -2x^{2} ni birlashtirish.
4x^{2}+2x-2-4x=0
Ikkala tarafdan 4x ni ayirish.
4x^{2}-2x-2=0
-2x ni olish uchun 2x va -4x ni birlashtirish.
2x^{2}-x-1=0
Ikki tarafini 2 ga bo‘ling.
a+b=-1 ab=2\left(-1\right)=-2
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 2x^{2}+ax+bx-1 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
a=-2 b=1
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. Faqat bundan juftlik tizim yechimidir.
\left(2x^{2}-2x\right)+\left(x-1\right)
2x^{2}-x-1 ni \left(2x^{2}-2x\right)+\left(x-1\right) sifatida qaytadan yozish.
2x\left(x-1\right)+x-1
2x^{2}-2x ichida 2x ni ajrating.
\left(x-1\right)\left(2x+1\right)
Distributiv funktsiyasidan foydalangan holda x-1 umumiy terminini chiqaring.
x=1 x=-\frac{1}{2}
Tenglamani yechish uchun x-1=0 va 2x+1=0 ni yeching.
x\left(5x+1\right)+\left(x+2\right)\left(x-1\right)=2x\left(x+2\right)
x qiymati -2,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+2\right) ga, x+2,x ning eng kichik karralisiga ko‘paytiring.
5x^{2}+x+\left(x+2\right)\left(x-1\right)=2x\left(x+2\right)
x ga 5x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+x+x^{2}+x-2=2x\left(x+2\right)
x+2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
6x^{2}+x+x-2=2x\left(x+2\right)
6x^{2} ni olish uchun 5x^{2} va x^{2} ni birlashtirish.
6x^{2}+2x-2=2x\left(x+2\right)
2x ni olish uchun x va x ni birlashtirish.
6x^{2}+2x-2=2x^{2}+4x
2x ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}+2x-2-2x^{2}=4x
Ikkala tarafdan 2x^{2} ni ayirish.
4x^{2}+2x-2=4x
4x^{2} ni olish uchun 6x^{2} va -2x^{2} ni birlashtirish.
4x^{2}+2x-2-4x=0
Ikkala tarafdan 4x ni ayirish.
4x^{2}-2x-2=0
-2x ni olish uchun 2x va -4x ni birlashtirish.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 4\left(-2\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -2 ni b va -2 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 4\left(-2\right)}}{2\times 4}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4-16\left(-2\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2\times 4}
-16 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{36}}{2\times 4}
4 ni 32 ga qo'shish.
x=\frac{-\left(-2\right)±6}{2\times 4}
36 ning kvadrat ildizini chiqarish.
x=\frac{2±6}{2\times 4}
-2 ning teskarisi 2 ga teng.
x=\frac{2±6}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{8}{8}
x=\frac{2±6}{8} tenglamasini yeching, bunda ± musbat. 2 ni 6 ga qo'shish.
x=1
8 ni 8 ga bo'lish.
x=-\frac{4}{8}
x=\frac{2±6}{8} tenglamasini yeching, bunda ± manfiy. 2 dan 6 ni ayirish.
x=-\frac{1}{2}
\frac{-4}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=1 x=-\frac{1}{2}
Tenglama yechildi.
x\left(5x+1\right)+\left(x+2\right)\left(x-1\right)=2x\left(x+2\right)
x qiymati -2,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+2\right) ga, x+2,x ning eng kichik karralisiga ko‘paytiring.
5x^{2}+x+\left(x+2\right)\left(x-1\right)=2x\left(x+2\right)
x ga 5x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x^{2}+x+x^{2}+x-2=2x\left(x+2\right)
x+2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
6x^{2}+x+x-2=2x\left(x+2\right)
6x^{2} ni olish uchun 5x^{2} va x^{2} ni birlashtirish.
6x^{2}+2x-2=2x\left(x+2\right)
2x ni olish uchun x va x ni birlashtirish.
6x^{2}+2x-2=2x^{2}+4x
2x ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}+2x-2-2x^{2}=4x
Ikkala tarafdan 2x^{2} ni ayirish.
4x^{2}+2x-2=4x
4x^{2} ni olish uchun 6x^{2} va -2x^{2} ni birlashtirish.
4x^{2}+2x-2-4x=0
Ikkala tarafdan 4x ni ayirish.
4x^{2}-2x-2=0
-2x ni olish uchun 2x va -4x ni birlashtirish.
4x^{2}-2x=2
2 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{4x^{2}-2x}{4}=\frac{2}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\left(-\frac{2}{4}\right)x=\frac{2}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{2}x=\frac{2}{4}
\frac{-2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{2}x=\frac{1}{2}
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{1}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{4}\right)^{2}=\frac{9}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{4}=\frac{3}{4} x-\frac{1}{4}=-\frac{3}{4}
Qisqartirish.
x=1 x=-\frac{1}{2}
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}