x uchun yechish
x=-\frac{3}{5}=-0,6
x=\frac{4}{5}=0,8
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{50}{49}x^{2}-\frac{10}{49}x-\frac{24}{49}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{10}{49}\right)±\sqrt{\left(-\frac{10}{49}\right)^{2}-4\times \frac{50}{49}\left(-\frac{24}{49}\right)}}{2\times \frac{50}{49}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{50}{49} ni a, -\frac{10}{49} ni b va -\frac{24}{49} ni c bilan almashtiring.
x=\frac{-\left(-\frac{10}{49}\right)±\sqrt{\frac{100}{2401}-4\times \frac{50}{49}\left(-\frac{24}{49}\right)}}{2\times \frac{50}{49}}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{10}{49} kvadratini chiqarish.
x=\frac{-\left(-\frac{10}{49}\right)±\sqrt{\frac{100}{2401}-\frac{200}{49}\left(-\frac{24}{49}\right)}}{2\times \frac{50}{49}}
-4 ni \frac{50}{49} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{10}{49}\right)±\sqrt{\frac{100+4800}{2401}}}{2\times \frac{50}{49}}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali -\frac{200}{49} ni -\frac{24}{49} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
x=\frac{-\left(-\frac{10}{49}\right)±\sqrt{\frac{100}{49}}}{2\times \frac{50}{49}}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{100}{2401} ni \frac{4800}{2401} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{-\left(-\frac{10}{49}\right)±\frac{10}{7}}{2\times \frac{50}{49}}
\frac{100}{49} ning kvadrat ildizini chiqarish.
x=\frac{\frac{10}{49}±\frac{10}{7}}{2\times \frac{50}{49}}
-\frac{10}{49} ning teskarisi \frac{10}{49} ga teng.
x=\frac{\frac{10}{49}±\frac{10}{7}}{\frac{100}{49}}
2 ni \frac{50}{49} marotabaga ko'paytirish.
x=\frac{\frac{80}{49}}{\frac{100}{49}}
x=\frac{\frac{10}{49}±\frac{10}{7}}{\frac{100}{49}} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{10}{49} ni \frac{10}{7} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{4}{5}
\frac{80}{49} ni \frac{100}{49} ga bo'lish \frac{80}{49} ga k'paytirish \frac{100}{49} ga qaytarish.
x=-\frac{\frac{60}{49}}{\frac{100}{49}}
x=\frac{\frac{10}{49}±\frac{10}{7}}{\frac{100}{49}} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{10}{7} ni \frac{10}{49} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=-\frac{3}{5}
-\frac{60}{49} ni \frac{100}{49} ga bo'lish -\frac{60}{49} ga k'paytirish \frac{100}{49} ga qaytarish.
x=\frac{4}{5} x=-\frac{3}{5}
Tenglama yechildi.
\frac{50}{49}x^{2}-\frac{10}{49}x-\frac{24}{49}=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{50}{49}x^{2}-\frac{10}{49}x-\frac{24}{49}-\left(-\frac{24}{49}\right)=-\left(-\frac{24}{49}\right)
\frac{24}{49} ni tenglamaning ikkala tarafiga qo'shish.
\frac{50}{49}x^{2}-\frac{10}{49}x=-\left(-\frac{24}{49}\right)
O‘zidan -\frac{24}{49} ayirilsa 0 qoladi.
\frac{50}{49}x^{2}-\frac{10}{49}x=\frac{24}{49}
0 dan -\frac{24}{49} ni ayirish.
\frac{\frac{50}{49}x^{2}-\frac{10}{49}x}{\frac{50}{49}}=\frac{\frac{24}{49}}{\frac{50}{49}}
Tenglamaning ikki tarafini \frac{50}{49} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x^{2}+\left(-\frac{\frac{10}{49}}{\frac{50}{49}}\right)x=\frac{\frac{24}{49}}{\frac{50}{49}}
\frac{50}{49} ga bo'lish \frac{50}{49} ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{5}x=\frac{\frac{24}{49}}{\frac{50}{49}}
-\frac{10}{49} ni \frac{50}{49} ga bo'lish -\frac{10}{49} ga k'paytirish \frac{50}{49} ga qaytarish.
x^{2}-\frac{1}{5}x=\frac{12}{25}
\frac{24}{49} ni \frac{50}{49} ga bo'lish \frac{24}{49} ga k'paytirish \frac{50}{49} ga qaytarish.
x^{2}-\frac{1}{5}x+\left(-\frac{1}{10}\right)^{2}=\frac{12}{25}+\left(-\frac{1}{10}\right)^{2}
-\frac{1}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{10} olish uchun. Keyin, -\frac{1}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{12}{25}+\frac{1}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{10} kvadratini chiqarish.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{49}{100}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{12}{25} ni \frac{1}{100} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{10}\right)^{2}=\frac{49}{100}
x^{2}-\frac{1}{5}x+\frac{1}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{10}\right)^{2}}=\sqrt{\frac{49}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{10}=\frac{7}{10} x-\frac{1}{10}=-\frac{7}{10}
Qisqartirish.
x=\frac{4}{5} x=-\frac{3}{5}
\frac{1}{10} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}