x uchun yechish
x=-\frac{4}{5}=-0,8
Grafik
Baham ko'rish
Klipbordga nusxa olish
40\left(5+x\right)=\left(x+12\right)\times 15
x qiymati -12 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 40\left(x+12\right) ga, 12+x,40 ning eng kichik karralisiga ko‘paytiring.
200+40x=\left(x+12\right)\times 15
40 ga 5+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
200+40x=15x+180
x+12 ga 15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
200+40x-15x=180
Ikkala tarafdan 15x ni ayirish.
200+25x=180
25x ni olish uchun 40x va -15x ni birlashtirish.
25x=180-200
Ikkala tarafdan 200 ni ayirish.
25x=-20
-20 olish uchun 180 dan 200 ni ayirish.
x=\frac{-20}{25}
Ikki tarafini 25 ga bo‘ling.
x=-\frac{4}{5}
\frac{-20}{25} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}