y uchun yechish
y=-\frac{\sqrt{3}\left(x+6\sqrt{3}-11\right)}{3}
x uchun yechish
x=-\sqrt{3}y+11-6\sqrt{3}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=x+y\sqrt{3}
\frac{5+2\sqrt{3}}{7+4\sqrt{3}} maxrajini 7-4\sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{7^{2}-\left(4\sqrt{3}\right)^{2}}=x+y\sqrt{3}
Hisoblang: \left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-\left(4\sqrt{3}\right)^{2}}=x+y\sqrt{3}
2 daraja ko‘rsatkichini 7 ga hisoblang va 49 ni qiymatni oling.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-4^{2}\left(\sqrt{3}\right)^{2}}=x+y\sqrt{3}
\left(4\sqrt{3}\right)^{2} ni kengaytirish.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\left(\sqrt{3}\right)^{2}}=x+y\sqrt{3}
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\times 3}=x+y\sqrt{3}
\sqrt{3} kvadrati – 3.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-48}=x+y\sqrt{3}
48 hosil qilish uchun 16 va 3 ni ko'paytirish.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{1}=x+y\sqrt{3}
1 olish uchun 49 dan 48 ni ayirish.
\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)=x+y\sqrt{3}
Har qanday son birga bo‘linganda, natija o‘zi chiqadi.
35-6\sqrt{3}-8\left(\sqrt{3}\right)^{2}=x+y\sqrt{3}
5+2\sqrt{3} ga 7-4\sqrt{3} ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
35-6\sqrt{3}-8\times 3=x+y\sqrt{3}
\sqrt{3} kvadrati – 3.
35-6\sqrt{3}-24=x+y\sqrt{3}
-24 hosil qilish uchun -8 va 3 ni ko'paytirish.
11-6\sqrt{3}=x+y\sqrt{3}
11 olish uchun 35 dan 24 ni ayirish.
x+y\sqrt{3}=11-6\sqrt{3}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
y\sqrt{3}=11-6\sqrt{3}-x
Ikkala tarafdan x ni ayirish.
\sqrt{3}y=-x+11-6\sqrt{3}
Tenglama standart shaklda.
\frac{\sqrt{3}y}{\sqrt{3}}=\frac{-x+11-6\sqrt{3}}{\sqrt{3}}
Ikki tarafini \sqrt{3} ga bo‘ling.
y=\frac{-x+11-6\sqrt{3}}{\sqrt{3}}
\sqrt{3} ga bo'lish \sqrt{3} ga ko'paytirishni bekor qiladi.
y=\frac{\sqrt{3}\left(-x+11-6\sqrt{3}\right)}{3}
-6\sqrt{3}-x+11 ni \sqrt{3} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}