x uchun yechish
x\leq \frac{9}{2}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{5}{6}\times 3+\frac{5}{6}\left(-1\right)x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}\left(2x-3\right)-x
\frac{5}{6} ga 3-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{5\times 3}{6}+\frac{5}{6}\left(-1\right)x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}\left(2x-3\right)-x
\frac{5}{6}\times 3 ni yagona kasrga aylantiring.
\frac{15}{6}+\frac{5}{6}\left(-1\right)x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}\left(2x-3\right)-x
15 hosil qilish uchun 5 va 3 ni ko'paytirish.
\frac{5}{2}+\frac{5}{6}\left(-1\right)x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}\left(2x-3\right)-x
\frac{15}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}\left(2x-3\right)-x
-\frac{5}{6} hosil qilish uchun \frac{5}{6} va -1 ni ko'paytirish.
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}x-\frac{1}{2}\left(-4\right)\geq \frac{1}{2}\left(2x-3\right)-x
-\frac{1}{2} ga x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}x+\frac{-\left(-4\right)}{2}\geq \frac{1}{2}\left(2x-3\right)-x
-\frac{1}{2}\left(-4\right) ni yagona kasrga aylantiring.
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}x+\frac{4}{2}\geq \frac{1}{2}\left(2x-3\right)-x
4 hosil qilish uchun -1 va -4 ni ko'paytirish.
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}x+2\geq \frac{1}{2}\left(2x-3\right)-x
2 ni olish uchun 4 ni 2 ga bo‘ling.
\frac{5}{2}-\frac{4}{3}x+2\geq \frac{1}{2}\left(2x-3\right)-x
-\frac{4}{3}x ni olish uchun -\frac{5}{6}x va -\frac{1}{2}x ni birlashtirish.
\frac{5}{2}-\frac{4}{3}x+\frac{4}{2}\geq \frac{1}{2}\left(2x-3\right)-x
2 ni \frac{4}{2} kasrga o‘giring.
\frac{5+4}{2}-\frac{4}{3}x\geq \frac{1}{2}\left(2x-3\right)-x
\frac{5}{2} va \frac{4}{2} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{9}{2}-\frac{4}{3}x\geq \frac{1}{2}\left(2x-3\right)-x
9 olish uchun 5 va 4'ni qo'shing.
\frac{9}{2}-\frac{4}{3}x\geq \frac{1}{2}\times 2x+\frac{1}{2}\left(-3\right)-x
\frac{1}{2} ga 2x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{9}{2}-\frac{4}{3}x\geq x+\frac{1}{2}\left(-3\right)-x
2 va 2 ni qisqartiring.
\frac{9}{2}-\frac{4}{3}x\geq x+\frac{-3}{2}-x
\frac{-3}{2} hosil qilish uchun \frac{1}{2} va -3 ni ko'paytirish.
\frac{9}{2}-\frac{4}{3}x\geq x-\frac{3}{2}-x
\frac{-3}{2} kasri manfiy belgini olib tashlash bilan -\frac{3}{2} sifatida qayta yozilishi mumkin.
\frac{9}{2}-\frac{4}{3}x\geq -\frac{3}{2}
0 ni olish uchun x va -x ni birlashtirish.
-\frac{4}{3}x\geq -\frac{3}{2}-\frac{9}{2}
Ikkala tarafdan \frac{9}{2} ni ayirish.
-\frac{4}{3}x\geq \frac{-3-9}{2}
-\frac{3}{2} va \frac{9}{2} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
-\frac{4}{3}x\geq \frac{-12}{2}
-12 olish uchun -3 dan 9 ni ayirish.
-\frac{4}{3}x\geq -6
-6 ni olish uchun -12 ni 2 ga bo‘ling.
x\leq -6\left(-\frac{3}{4}\right)
Ikki tarafini -\frac{3}{4} va teskari kasri -\frac{4}{3} ga ko‘paytiring. -\frac{4}{3} manfiy boʻlgani uchun tengsizlikning yo‘nalishi o‘zgaradi.
x\leq \frac{-6\left(-3\right)}{4}
-6\left(-\frac{3}{4}\right) ni yagona kasrga aylantiring.
x\leq \frac{18}{4}
18 hosil qilish uchun -6 va -3 ni ko'paytirish.
x\leq \frac{9}{2}
\frac{18}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}