x uchun yechish
x = \frac{3 \sqrt{9389} + 1}{5} \approx 58,338111424
x=\frac{1-3\sqrt{9389}}{5}\approx -57,938111424
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{5}{4}x^{2}-\frac{1}{2}x+0-65^{2}=0
0 hosil qilish uchun 0 va 25 ni ko'paytirish.
\frac{5}{4}x^{2}-\frac{1}{2}x-65^{2}=0
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{5}{4}x^{2}-\frac{1}{2}x-4225=0
2 daraja ko‘rsatkichini 65 ga hisoblang va 4225 ni qiymatni oling.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times \frac{5}{4}\left(-4225\right)}}{2\times \frac{5}{4}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{5}{4} ni a, -\frac{1}{2} ni b va -4225 ni c bilan almashtiring.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\times \frac{5}{4}\left(-4225\right)}}{2\times \frac{5}{4}}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-5\left(-4225\right)}}{2\times \frac{5}{4}}
-4 ni \frac{5}{4} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}+21125}}{2\times \frac{5}{4}}
-5 ni -4225 marotabaga ko'paytirish.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{84501}{4}}}{2\times \frac{5}{4}}
\frac{1}{4} ni 21125 ga qo'shish.
x=\frac{-\left(-\frac{1}{2}\right)±\frac{3\sqrt{9389}}{2}}{2\times \frac{5}{4}}
\frac{84501}{4} ning kvadrat ildizini chiqarish.
x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{2\times \frac{5}{4}}
-\frac{1}{2} ning teskarisi \frac{1}{2} ga teng.
x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{\frac{5}{2}}
2 ni \frac{5}{4} marotabaga ko'paytirish.
x=\frac{3\sqrt{9389}+1}{2\times \frac{5}{2}}
x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{\frac{5}{2}} tenglamasini yeching, bunda ± musbat. \frac{1}{2} ni \frac{3\sqrt{9389}}{2} ga qo'shish.
x=\frac{3\sqrt{9389}+1}{5}
\frac{1+3\sqrt{9389}}{2} ni \frac{5}{2} ga bo'lish \frac{1+3\sqrt{9389}}{2} ga k'paytirish \frac{5}{2} ga qaytarish.
x=\frac{1-3\sqrt{9389}}{2\times \frac{5}{2}}
x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{\frac{5}{2}} tenglamasini yeching, bunda ± manfiy. \frac{1}{2} dan \frac{3\sqrt{9389}}{2} ni ayirish.
x=\frac{1-3\sqrt{9389}}{5}
\frac{1-3\sqrt{9389}}{2} ni \frac{5}{2} ga bo'lish \frac{1-3\sqrt{9389}}{2} ga k'paytirish \frac{5}{2} ga qaytarish.
x=\frac{3\sqrt{9389}+1}{5} x=\frac{1-3\sqrt{9389}}{5}
Tenglama yechildi.
\frac{5}{4}x^{2}-\frac{1}{2}x+0-65^{2}=0
0 hosil qilish uchun 0 va 25 ni ko'paytirish.
\frac{5}{4}x^{2}-\frac{1}{2}x-65^{2}=0
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{5}{4}x^{2}-\frac{1}{2}x-4225=0
2 daraja ko‘rsatkichini 65 ga hisoblang va 4225 ni qiymatni oling.
\frac{5}{4}x^{2}-\frac{1}{2}x=4225
4225 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{\frac{5}{4}x^{2}-\frac{1}{2}x}{\frac{5}{4}}=\frac{4225}{\frac{5}{4}}
Tenglamaning ikki tarafini \frac{5}{4} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x^{2}+\left(-\frac{\frac{1}{2}}{\frac{5}{4}}\right)x=\frac{4225}{\frac{5}{4}}
\frac{5}{4} ga bo'lish \frac{5}{4} ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{5}x=\frac{4225}{\frac{5}{4}}
-\frac{1}{2} ni \frac{5}{4} ga bo'lish -\frac{1}{2} ga k'paytirish \frac{5}{4} ga qaytarish.
x^{2}-\frac{2}{5}x=3380
4225 ni \frac{5}{4} ga bo'lish 4225 ga k'paytirish \frac{5}{4} ga qaytarish.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=3380+\left(-\frac{1}{5}\right)^{2}
-\frac{2}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{5} olish uchun. Keyin, -\frac{1}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{5}x+\frac{1}{25}=3380+\frac{1}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{5} kvadratini chiqarish.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{84501}{25}
3380 ni \frac{1}{25} ga qo'shish.
\left(x-\frac{1}{5}\right)^{2}=\frac{84501}{25}
x^{2}-\frac{2}{5}x+\frac{1}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{84501}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{5}=\frac{3\sqrt{9389}}{5} x-\frac{1}{5}=-\frac{3\sqrt{9389}}{5}
Qisqartirish.
x=\frac{3\sqrt{9389}+1}{5} x=\frac{1-3\sqrt{9389}}{5}
\frac{1}{5} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}