Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(4x-3\right)\left(4x-3\right)-10\left(2x+1\right)\left(2x-1\right)=3\left(4x-3\right)\left(2x+1\right)
x qiymati -\frac{1}{2},\frac{3}{4} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(4x-3\right)\left(2x+1\right) ga, 2x+1,4x-3 ning eng kichik karralisiga ko‘paytiring.
\left(4x-3\right)^{2}-10\left(2x+1\right)\left(2x-1\right)=3\left(4x-3\right)\left(2x+1\right)
\left(4x-3\right)^{2} hosil qilish uchun 4x-3 va 4x-3 ni ko'paytirish.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)=3\left(4x-3\right)\left(2x+1\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(4x-3\right)^{2} kengaytirilishi uchun ishlating.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)=\left(12x-9\right)\left(2x+1\right)
3 ga 4x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)=24x^{2}-6x-9
12x-9 ga 2x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)-24x^{2}=-6x-9
Ikkala tarafdan 24x^{2} ni ayirish.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)-24x^{2}+6x=-9
6x ni ikki tarafga qo’shing.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)-24x^{2}+6x+9=0
9 ni ikki tarafga qo’shing.
16x^{2}-24x+9+\left(-20x-10\right)\left(2x-1\right)-24x^{2}+6x+9=0
-10 ga 2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16x^{2}-24x+9-40x^{2}+10-24x^{2}+6x+9=0
-20x-10 ga 2x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-24x^{2}-24x+9+10-24x^{2}+6x+9=0
-24x^{2} ni olish uchun 16x^{2} va -40x^{2} ni birlashtirish.
-24x^{2}-24x+19-24x^{2}+6x+9=0
19 olish uchun 9 va 10'ni qo'shing.
-48x^{2}-24x+19+6x+9=0
-48x^{2} ni olish uchun -24x^{2} va -24x^{2} ni birlashtirish.
-48x^{2}-18x+19+9=0
-18x ni olish uchun -24x va 6x ni birlashtirish.
-48x^{2}-18x+28=0
28 olish uchun 19 va 9'ni qo'shing.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-48\right)\times 28}}{2\left(-48\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -48 ni a, -18 ni b va 28 ni c bilan almashtiring.
x=\frac{-\left(-18\right)±\sqrt{324-4\left(-48\right)\times 28}}{2\left(-48\right)}
-18 kvadratini chiqarish.
x=\frac{-\left(-18\right)±\sqrt{324+192\times 28}}{2\left(-48\right)}
-4 ni -48 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{324+5376}}{2\left(-48\right)}
192 ni 28 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{5700}}{2\left(-48\right)}
324 ni 5376 ga qo'shish.
x=\frac{-\left(-18\right)±10\sqrt{57}}{2\left(-48\right)}
5700 ning kvadrat ildizini chiqarish.
x=\frac{18±10\sqrt{57}}{2\left(-48\right)}
-18 ning teskarisi 18 ga teng.
x=\frac{18±10\sqrt{57}}{-96}
2 ni -48 marotabaga ko'paytirish.
x=\frac{10\sqrt{57}+18}{-96}
x=\frac{18±10\sqrt{57}}{-96} tenglamasini yeching, bunda ± musbat. 18 ni 10\sqrt{57} ga qo'shish.
x=-\frac{5\sqrt{57}}{48}-\frac{3}{16}
18+10\sqrt{57} ni -96 ga bo'lish.
x=\frac{18-10\sqrt{57}}{-96}
x=\frac{18±10\sqrt{57}}{-96} tenglamasini yeching, bunda ± manfiy. 18 dan 10\sqrt{57} ni ayirish.
x=\frac{5\sqrt{57}}{48}-\frac{3}{16}
18-10\sqrt{57} ni -96 ga bo'lish.
x=-\frac{5\sqrt{57}}{48}-\frac{3}{16} x=\frac{5\sqrt{57}}{48}-\frac{3}{16}
Tenglama yechildi.
\left(4x-3\right)\left(4x-3\right)-10\left(2x+1\right)\left(2x-1\right)=3\left(4x-3\right)\left(2x+1\right)
x qiymati -\frac{1}{2},\frac{3}{4} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(4x-3\right)\left(2x+1\right) ga, 2x+1,4x-3 ning eng kichik karralisiga ko‘paytiring.
\left(4x-3\right)^{2}-10\left(2x+1\right)\left(2x-1\right)=3\left(4x-3\right)\left(2x+1\right)
\left(4x-3\right)^{2} hosil qilish uchun 4x-3 va 4x-3 ni ko'paytirish.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)=3\left(4x-3\right)\left(2x+1\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(4x-3\right)^{2} kengaytirilishi uchun ishlating.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)=\left(12x-9\right)\left(2x+1\right)
3 ga 4x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)=24x^{2}-6x-9
12x-9 ga 2x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)-24x^{2}=-6x-9
Ikkala tarafdan 24x^{2} ni ayirish.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)-24x^{2}+6x=-9
6x ni ikki tarafga qo’shing.
16x^{2}-24x+9+\left(-20x-10\right)\left(2x-1\right)-24x^{2}+6x=-9
-10 ga 2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16x^{2}-24x+9-40x^{2}+10-24x^{2}+6x=-9
-20x-10 ga 2x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-24x^{2}-24x+9+10-24x^{2}+6x=-9
-24x^{2} ni olish uchun 16x^{2} va -40x^{2} ni birlashtirish.
-24x^{2}-24x+19-24x^{2}+6x=-9
19 olish uchun 9 va 10'ni qo'shing.
-48x^{2}-24x+19+6x=-9
-48x^{2} ni olish uchun -24x^{2} va -24x^{2} ni birlashtirish.
-48x^{2}-18x+19=-9
-18x ni olish uchun -24x va 6x ni birlashtirish.
-48x^{2}-18x=-9-19
Ikkala tarafdan 19 ni ayirish.
-48x^{2}-18x=-28
-28 olish uchun -9 dan 19 ni ayirish.
\frac{-48x^{2}-18x}{-48}=-\frac{28}{-48}
Ikki tarafini -48 ga bo‘ling.
x^{2}+\left(-\frac{18}{-48}\right)x=-\frac{28}{-48}
-48 ga bo'lish -48 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{8}x=-\frac{28}{-48}
\frac{-18}{-48} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{3}{8}x=\frac{7}{12}
\frac{-28}{-48} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{3}{8}x+\left(\frac{3}{16}\right)^{2}=\frac{7}{12}+\left(\frac{3}{16}\right)^{2}
\frac{3}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{16} olish uchun. Keyin, \frac{3}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{8}x+\frac{9}{256}=\frac{7}{12}+\frac{9}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{16} kvadratini chiqarish.
x^{2}+\frac{3}{8}x+\frac{9}{256}=\frac{475}{768}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{7}{12} ni \frac{9}{256} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{16}\right)^{2}=\frac{475}{768}
x^{2}+\frac{3}{8}x+\frac{9}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{16}\right)^{2}}=\sqrt{\frac{475}{768}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{16}=\frac{5\sqrt{57}}{48} x+\frac{3}{16}=-\frac{5\sqrt{57}}{48}
Qisqartirish.
x=\frac{5\sqrt{57}}{48}-\frac{3}{16} x=-\frac{5\sqrt{57}}{48}-\frac{3}{16}
Tenglamaning ikkala tarafidan \frac{3}{16} ni ayirish.