x uchun yechish
x=-120
x=80
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-20\right)\times 4800+x\left(x-20\right)\times 10=x\times 4200
x qiymati 0,20 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x-20\right) ga, x,x-20 ning eng kichik karralisiga ko‘paytiring.
4800x-96000+x\left(x-20\right)\times 10=x\times 4200
x-20 ga 4800 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4800x-96000+\left(x^{2}-20x\right)\times 10=x\times 4200
x ga x-20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4800x-96000+10x^{2}-200x=x\times 4200
x^{2}-20x ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4600x-96000+10x^{2}=x\times 4200
4600x ni olish uchun 4800x va -200x ni birlashtirish.
4600x-96000+10x^{2}-x\times 4200=0
Ikkala tarafdan x\times 4200 ni ayirish.
400x-96000+10x^{2}=0
400x ni olish uchun 4600x va -x\times 4200 ni birlashtirish.
40x-9600+x^{2}=0
Ikki tarafini 10 ga bo‘ling.
x^{2}+40x-9600=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=40 ab=1\left(-9600\right)=-9600
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon x^{2}+ax+bx-9600 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,9600 -2,4800 -3,3200 -4,2400 -5,1920 -6,1600 -8,1200 -10,960 -12,800 -15,640 -16,600 -20,480 -24,400 -25,384 -30,320 -32,300 -40,240 -48,200 -50,192 -60,160 -64,150 -75,128 -80,120 -96,100
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -9600-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+9600=9599 -2+4800=4798 -3+3200=3197 -4+2400=2396 -5+1920=1915 -6+1600=1594 -8+1200=1192 -10+960=950 -12+800=788 -15+640=625 -16+600=584 -20+480=460 -24+400=376 -25+384=359 -30+320=290 -32+300=268 -40+240=200 -48+200=152 -50+192=142 -60+160=100 -64+150=86 -75+128=53 -80+120=40 -96+100=4
Har bir juftlik yigʻindisini hisoblang.
a=-80 b=120
Yechim – 40 yigʻindisini beruvchi juftlik.
\left(x^{2}-80x\right)+\left(120x-9600\right)
x^{2}+40x-9600 ni \left(x^{2}-80x\right)+\left(120x-9600\right) sifatida qaytadan yozish.
x\left(x-80\right)+120\left(x-80\right)
Birinchi guruhda x ni va ikkinchi guruhda 120 ni faktordan chiqaring.
\left(x-80\right)\left(x+120\right)
Distributiv funktsiyasidan foydalangan holda x-80 umumiy terminini chiqaring.
x=80 x=-120
Tenglamani yechish uchun x-80=0 va x+120=0 ni yeching.
\left(x-20\right)\times 4800+x\left(x-20\right)\times 10=x\times 4200
x qiymati 0,20 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x-20\right) ga, x,x-20 ning eng kichik karralisiga ko‘paytiring.
4800x-96000+x\left(x-20\right)\times 10=x\times 4200
x-20 ga 4800 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4800x-96000+\left(x^{2}-20x\right)\times 10=x\times 4200
x ga x-20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4800x-96000+10x^{2}-200x=x\times 4200
x^{2}-20x ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4600x-96000+10x^{2}=x\times 4200
4600x ni olish uchun 4800x va -200x ni birlashtirish.
4600x-96000+10x^{2}-x\times 4200=0
Ikkala tarafdan x\times 4200 ni ayirish.
400x-96000+10x^{2}=0
400x ni olish uchun 4600x va -x\times 4200 ni birlashtirish.
10x^{2}+400x-96000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-400±\sqrt{400^{2}-4\times 10\left(-96000\right)}}{2\times 10}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 10 ni a, 400 ni b va -96000 ni c bilan almashtiring.
x=\frac{-400±\sqrt{160000-4\times 10\left(-96000\right)}}{2\times 10}
400 kvadratini chiqarish.
x=\frac{-400±\sqrt{160000-40\left(-96000\right)}}{2\times 10}
-4 ni 10 marotabaga ko'paytirish.
x=\frac{-400±\sqrt{160000+3840000}}{2\times 10}
-40 ni -96000 marotabaga ko'paytirish.
x=\frac{-400±\sqrt{4000000}}{2\times 10}
160000 ni 3840000 ga qo'shish.
x=\frac{-400±2000}{2\times 10}
4000000 ning kvadrat ildizini chiqarish.
x=\frac{-400±2000}{20}
2 ni 10 marotabaga ko'paytirish.
x=\frac{1600}{20}
x=\frac{-400±2000}{20} tenglamasini yeching, bunda ± musbat. -400 ni 2000 ga qo'shish.
x=80
1600 ni 20 ga bo'lish.
x=-\frac{2400}{20}
x=\frac{-400±2000}{20} tenglamasini yeching, bunda ± manfiy. -400 dan 2000 ni ayirish.
x=-120
-2400 ni 20 ga bo'lish.
x=80 x=-120
Tenglama yechildi.
\left(x-20\right)\times 4800+x\left(x-20\right)\times 10=x\times 4200
x qiymati 0,20 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x-20\right) ga, x,x-20 ning eng kichik karralisiga ko‘paytiring.
4800x-96000+x\left(x-20\right)\times 10=x\times 4200
x-20 ga 4800 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4800x-96000+\left(x^{2}-20x\right)\times 10=x\times 4200
x ga x-20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4800x-96000+10x^{2}-200x=x\times 4200
x^{2}-20x ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4600x-96000+10x^{2}=x\times 4200
4600x ni olish uchun 4800x va -200x ni birlashtirish.
4600x-96000+10x^{2}-x\times 4200=0
Ikkala tarafdan x\times 4200 ni ayirish.
400x-96000+10x^{2}=0
400x ni olish uchun 4600x va -x\times 4200 ni birlashtirish.
400x+10x^{2}=96000
96000 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
10x^{2}+400x=96000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{10x^{2}+400x}{10}=\frac{96000}{10}
Ikki tarafini 10 ga bo‘ling.
x^{2}+\frac{400}{10}x=\frac{96000}{10}
10 ga bo'lish 10 ga ko'paytirishni bekor qiladi.
x^{2}+40x=\frac{96000}{10}
400 ni 10 ga bo'lish.
x^{2}+40x=9600
96000 ni 10 ga bo'lish.
x^{2}+40x+20^{2}=9600+20^{2}
40 ni bo‘lish, x shartining koeffitsienti, 2 ga 20 olish uchun. Keyin, 20 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+40x+400=9600+400
20 kvadratini chiqarish.
x^{2}+40x+400=10000
9600 ni 400 ga qo'shish.
\left(x+20\right)^{2}=10000
x^{2}+40x+400 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+20\right)^{2}}=\sqrt{10000}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+20=100 x+20=-100
Qisqartirish.
x=80 x=-120
Tenglamaning ikkala tarafidan 20 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}