x uchun yechish
x=80
x = \frac{140}{11} = 12\frac{8}{11} \approx 12,727272727
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-20\right)\times 400+\left(x-20\right)\times \frac{400}{5}\times 2+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
x qiymati 0,20 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x-20\right) ga, x,x-20 ning eng kichik karralisiga ko‘paytiring.
400x-8000+\left(x-20\right)\times \frac{400}{5}\times 2+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
x-20 ga 400 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
400x-8000+\left(x-20\right)\times 80\times 2+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
80 ni olish uchun 400 ni 5 ga bo‘ling.
400x-8000+\left(x-20\right)\times 160+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
160 hosil qilish uchun 80 va 2 ni ko'paytirish.
400x-8000+160x-3200+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
x-20 ga 160 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
560x-8000-3200+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
560x ni olish uchun 400x va 160x ni birlashtirish.
560x-11200+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
-11200 olish uchun -8000 dan 3200 ni ayirish.
560x-11200+x\times 80\times 3=11x\left(x-20\right)
80 ni olish uchun 400 ni 5 ga bo‘ling.
560x-11200+x\times 240=11x\left(x-20\right)
240 hosil qilish uchun 80 va 3 ni ko'paytirish.
800x-11200=11x\left(x-20\right)
800x ni olish uchun 560x va x\times 240 ni birlashtirish.
800x-11200=11x^{2}-220x
11x ga x-20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
800x-11200-11x^{2}=-220x
Ikkala tarafdan 11x^{2} ni ayirish.
800x-11200-11x^{2}+220x=0
220x ni ikki tarafga qo’shing.
1020x-11200-11x^{2}=0
1020x ni olish uchun 800x va 220x ni birlashtirish.
-11x^{2}+1020x-11200=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1020±\sqrt{1020^{2}-4\left(-11\right)\left(-11200\right)}}{2\left(-11\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -11 ni a, 1020 ni b va -11200 ni c bilan almashtiring.
x=\frac{-1020±\sqrt{1040400-4\left(-11\right)\left(-11200\right)}}{2\left(-11\right)}
1020 kvadratini chiqarish.
x=\frac{-1020±\sqrt{1040400+44\left(-11200\right)}}{2\left(-11\right)}
-4 ni -11 marotabaga ko'paytirish.
x=\frac{-1020±\sqrt{1040400-492800}}{2\left(-11\right)}
44 ni -11200 marotabaga ko'paytirish.
x=\frac{-1020±\sqrt{547600}}{2\left(-11\right)}
1040400 ni -492800 ga qo'shish.
x=\frac{-1020±740}{2\left(-11\right)}
547600 ning kvadrat ildizini chiqarish.
x=\frac{-1020±740}{-22}
2 ni -11 marotabaga ko'paytirish.
x=-\frac{280}{-22}
x=\frac{-1020±740}{-22} tenglamasini yeching, bunda ± musbat. -1020 ni 740 ga qo'shish.
x=\frac{140}{11}
\frac{-280}{-22} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{1760}{-22}
x=\frac{-1020±740}{-22} tenglamasini yeching, bunda ± manfiy. -1020 dan 740 ni ayirish.
x=80
-1760 ni -22 ga bo'lish.
x=\frac{140}{11} x=80
Tenglama yechildi.
\left(x-20\right)\times 400+\left(x-20\right)\times \frac{400}{5}\times 2+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
x qiymati 0,20 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x-20\right) ga, x,x-20 ning eng kichik karralisiga ko‘paytiring.
400x-8000+\left(x-20\right)\times \frac{400}{5}\times 2+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
x-20 ga 400 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
400x-8000+\left(x-20\right)\times 80\times 2+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
80 ni olish uchun 400 ni 5 ga bo‘ling.
400x-8000+\left(x-20\right)\times 160+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
160 hosil qilish uchun 80 va 2 ni ko'paytirish.
400x-8000+160x-3200+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
x-20 ga 160 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
560x-8000-3200+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
560x ni olish uchun 400x va 160x ni birlashtirish.
560x-11200+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
-11200 olish uchun -8000 dan 3200 ni ayirish.
560x-11200+x\times 80\times 3=11x\left(x-20\right)
80 ni olish uchun 400 ni 5 ga bo‘ling.
560x-11200+x\times 240=11x\left(x-20\right)
240 hosil qilish uchun 80 va 3 ni ko'paytirish.
800x-11200=11x\left(x-20\right)
800x ni olish uchun 560x va x\times 240 ni birlashtirish.
800x-11200=11x^{2}-220x
11x ga x-20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
800x-11200-11x^{2}=-220x
Ikkala tarafdan 11x^{2} ni ayirish.
800x-11200-11x^{2}+220x=0
220x ni ikki tarafga qo’shing.
1020x-11200-11x^{2}=0
1020x ni olish uchun 800x va 220x ni birlashtirish.
1020x-11x^{2}=11200
11200 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-11x^{2}+1020x=11200
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-11x^{2}+1020x}{-11}=\frac{11200}{-11}
Ikki tarafini -11 ga bo‘ling.
x^{2}+\frac{1020}{-11}x=\frac{11200}{-11}
-11 ga bo'lish -11 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1020}{11}x=\frac{11200}{-11}
1020 ni -11 ga bo'lish.
x^{2}-\frac{1020}{11}x=-\frac{11200}{11}
11200 ni -11 ga bo'lish.
x^{2}-\frac{1020}{11}x+\left(-\frac{510}{11}\right)^{2}=-\frac{11200}{11}+\left(-\frac{510}{11}\right)^{2}
-\frac{1020}{11} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{510}{11} olish uchun. Keyin, -\frac{510}{11} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1020}{11}x+\frac{260100}{121}=-\frac{11200}{11}+\frac{260100}{121}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{510}{11} kvadratini chiqarish.
x^{2}-\frac{1020}{11}x+\frac{260100}{121}=\frac{136900}{121}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{11200}{11} ni \frac{260100}{121} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{510}{11}\right)^{2}=\frac{136900}{121}
x^{2}-\frac{1020}{11}x+\frac{260100}{121} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{510}{11}\right)^{2}}=\sqrt{\frac{136900}{121}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{510}{11}=\frac{370}{11} x-\frac{510}{11}=-\frac{370}{11}
Qisqartirish.
x=80 x=\frac{140}{11}
\frac{510}{11} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}