Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(4-2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 3+i.
\frac{\left(4-2i\right)\left(3+i\right)}{3^{2}-i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-2i\right)\left(3+i\right)}{10}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{4\times 3+4i-2i\times 3-2i^{2}}{10}
Binomlarni ko‘paytirgandek 4-2i va 3+i murakkab sonlarni ko‘paytiring.
\frac{4\times 3+4i-2i\times 3-2\left(-1\right)}{10}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{12+4i-6i+2}{10}
4\times 3+4i-2i\times 3-2\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{12+2+\left(4-6\right)i}{10}
12+4i-6i+2 ichida real va mavhum qismlarni birlashtiring.
\frac{14-2i}{10}
12+2+\left(4-6\right)i ichida qo‘shishlarni bajaring.
\frac{7}{5}-\frac{1}{5}i
\frac{7}{5}-\frac{1}{5}i ni olish uchun 14-2i ni 10 ga bo‘ling.
Re(\frac{\left(4-2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)})
\frac{4-2i}{3-i}ning surat va maxrajini murakkab tutash maxraj 3+i bilan ko‘paytiring.
Re(\frac{\left(4-2i\right)\left(3+i\right)}{3^{2}-i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4-2i\right)\left(3+i\right)}{10})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{4\times 3+4i-2i\times 3-2i^{2}}{10})
Binomlarni ko‘paytirgandek 4-2i va 3+i murakkab sonlarni ko‘paytiring.
Re(\frac{4\times 3+4i-2i\times 3-2\left(-1\right)}{10})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{12+4i-6i+2}{10})
4\times 3+4i-2i\times 3-2\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{12+2+\left(4-6\right)i}{10})
12+4i-6i+2 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{14-2i}{10})
12+2+\left(4-6\right)i ichida qo‘shishlarni bajaring.
Re(\frac{7}{5}-\frac{1}{5}i)
\frac{7}{5}-\frac{1}{5}i ni olish uchun 14-2i ni 10 ga bo‘ling.
\frac{7}{5}
\frac{7}{5}-\frac{1}{5}i ning real qismi – \frac{7}{5}.