x uchun yechish
x=3
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x+2\right)\left(4+2x\right)=2\left(4+7x\right)
x qiymati -2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(x+2\right) ga, 4,4+2x ning eng kichik karralisiga ko‘paytiring.
8x+2x^{2}+8=2\left(4+7x\right)
x+2 ga 4+2x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
8x+2x^{2}+8=8+14x
2 ga 4+7x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8x+2x^{2}+8-8=14x
Ikkala tarafdan 8 ni ayirish.
8x+2x^{2}=14x
0 olish uchun 8 dan 8 ni ayirish.
8x+2x^{2}-14x=0
Ikkala tarafdan 14x ni ayirish.
-6x+2x^{2}=0
-6x ni olish uchun 8x va -14x ni birlashtirish.
2x^{2}-6x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -6 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±6}{2\times 2}
\left(-6\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{6±6}{2\times 2}
-6 ning teskarisi 6 ga teng.
x=\frac{6±6}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{12}{4}
x=\frac{6±6}{4} tenglamasini yeching, bunda ± musbat. 6 ni 6 ga qo'shish.
x=3
12 ni 4 ga bo'lish.
x=\frac{0}{4}
x=\frac{6±6}{4} tenglamasini yeching, bunda ± manfiy. 6 dan 6 ni ayirish.
x=0
0 ni 4 ga bo'lish.
x=3 x=0
Tenglama yechildi.
\left(x+2\right)\left(4+2x\right)=2\left(4+7x\right)
x qiymati -2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(x+2\right) ga, 4,4+2x ning eng kichik karralisiga ko‘paytiring.
8x+2x^{2}+8=2\left(4+7x\right)
x+2 ga 4+2x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
8x+2x^{2}+8=8+14x
2 ga 4+7x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8x+2x^{2}+8-14x=8
Ikkala tarafdan 14x ni ayirish.
-6x+2x^{2}+8=8
-6x ni olish uchun 8x va -14x ni birlashtirish.
-6x+2x^{2}=8-8
Ikkala tarafdan 8 ni ayirish.
-6x+2x^{2}=0
0 olish uchun 8 dan 8 ni ayirish.
2x^{2}-6x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{2x^{2}-6x}{2}=\frac{0}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{6}{2}\right)x=\frac{0}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-3x=\frac{0}{2}
-6 ni 2 ga bo'lish.
x^{2}-3x=0
0 ni 2 ga bo'lish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
Qisqartirish.
x=3 x=0
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}