Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x+1\right)\times 3x+\left(-2-2x\right)x-\left(x-1\right)\times 9=0
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x-1\right)\left(x+1\right) ga, 2x-2,1-x,2x+2 ning eng kichik karralisiga ko‘paytiring.
\left(3x+3\right)x+\left(-2-2x\right)x-\left(x-1\right)\times 9=0
x+1 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+3x+\left(-2-2x\right)x-\left(x-1\right)\times 9=0
3x+3 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+3x-2x-2x^{2}-\left(x-1\right)\times 9=0
-2-2x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+x-2x^{2}-\left(x-1\right)\times 9=0
x ni olish uchun 3x va -2x ni birlashtirish.
x^{2}+x-\left(x-1\right)\times 9=0
x^{2} ni olish uchun 3x^{2} va -2x^{2} ni birlashtirish.
x^{2}+x-\left(9x-9\right)=0
x-1 ga 9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+x-9x+9=0
9x-9 teskarisini topish uchun har birining teskarisini toping.
x^{2}-8x+9=0
-8x ni olish uchun x va -9x ni birlashtirish.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 9}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -8 ni b va 9 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 9}}{2}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-36}}{2}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{28}}{2}
64 ni -36 ga qo'shish.
x=\frac{-\left(-8\right)±2\sqrt{7}}{2}
28 ning kvadrat ildizini chiqarish.
x=\frac{8±2\sqrt{7}}{2}
-8 ning teskarisi 8 ga teng.
x=\frac{2\sqrt{7}+8}{2}
x=\frac{8±2\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. 8 ni 2\sqrt{7} ga qo'shish.
x=\sqrt{7}+4
8+2\sqrt{7} ni 2 ga bo'lish.
x=\frac{8-2\sqrt{7}}{2}
x=\frac{8±2\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. 8 dan 2\sqrt{7} ni ayirish.
x=4-\sqrt{7}
8-2\sqrt{7} ni 2 ga bo'lish.
x=\sqrt{7}+4 x=4-\sqrt{7}
Tenglama yechildi.
\left(x+1\right)\times 3x+\left(-2-2x\right)x-\left(x-1\right)\times 9=0
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x-1\right)\left(x+1\right) ga, 2x-2,1-x,2x+2 ning eng kichik karralisiga ko‘paytiring.
\left(3x+3\right)x+\left(-2-2x\right)x-\left(x-1\right)\times 9=0
x+1 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+3x+\left(-2-2x\right)x-\left(x-1\right)\times 9=0
3x+3 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+3x-2x-2x^{2}-\left(x-1\right)\times 9=0
-2-2x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+x-2x^{2}-\left(x-1\right)\times 9=0
x ni olish uchun 3x va -2x ni birlashtirish.
x^{2}+x-\left(x-1\right)\times 9=0
x^{2} ni olish uchun 3x^{2} va -2x^{2} ni birlashtirish.
x^{2}+x-\left(9x-9\right)=0
x-1 ga 9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+x-9x+9=0
9x-9 teskarisini topish uchun har birining teskarisini toping.
x^{2}-8x+9=0
-8x ni olish uchun x va -9x ni birlashtirish.
x^{2}-8x=-9
Ikkala tarafdan 9 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-8x+\left(-4\right)^{2}=-9+\left(-4\right)^{2}
-8 ni bo‘lish, x shartining koeffitsienti, 2 ga -4 olish uchun. Keyin, -4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-8x+16=-9+16
-4 kvadratini chiqarish.
x^{2}-8x+16=7
-9 ni 16 ga qo'shish.
\left(x-4\right)^{2}=7
x^{2}-8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-4\right)^{2}}=\sqrt{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-4=\sqrt{7} x-4=-\sqrt{7}
Qisqartirish.
x=\sqrt{7}+4 x=4-\sqrt{7}
4 ni tenglamaning ikkala tarafiga qo'shish.