x uchun yechish
x = \frac{\sqrt{3649} + 43}{30} \approx 3,446898441
x=\frac{43-\sqrt{3649}}{30}\approx -0,580231775
Grafik
Baham ko'rish
Klipbordga nusxa olish
360+x\times 156=\left(x-2\right)\times 180x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
360+x\times 156=\left(180x-360\right)x
x-2 ga 180 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
360+x\times 156=180x^{2}-360x
180x-360 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
360+x\times 156-180x^{2}=-360x
Ikkala tarafdan 180x^{2} ni ayirish.
360+x\times 156-180x^{2}+360x=0
360x ni ikki tarafga qo’shing.
360+516x-180x^{2}=0
516x ni olish uchun x\times 156 va 360x ni birlashtirish.
-180x^{2}+516x+360=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-516±\sqrt{516^{2}-4\left(-180\right)\times 360}}{2\left(-180\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -180 ni a, 516 ni b va 360 ni c bilan almashtiring.
x=\frac{-516±\sqrt{266256-4\left(-180\right)\times 360}}{2\left(-180\right)}
516 kvadratini chiqarish.
x=\frac{-516±\sqrt{266256+720\times 360}}{2\left(-180\right)}
-4 ni -180 marotabaga ko'paytirish.
x=\frac{-516±\sqrt{266256+259200}}{2\left(-180\right)}
720 ni 360 marotabaga ko'paytirish.
x=\frac{-516±\sqrt{525456}}{2\left(-180\right)}
266256 ni 259200 ga qo'shish.
x=\frac{-516±12\sqrt{3649}}{2\left(-180\right)}
525456 ning kvadrat ildizini chiqarish.
x=\frac{-516±12\sqrt{3649}}{-360}
2 ni -180 marotabaga ko'paytirish.
x=\frac{12\sqrt{3649}-516}{-360}
x=\frac{-516±12\sqrt{3649}}{-360} tenglamasini yeching, bunda ± musbat. -516 ni 12\sqrt{3649} ga qo'shish.
x=\frac{43-\sqrt{3649}}{30}
-516+12\sqrt{3649} ni -360 ga bo'lish.
x=\frac{-12\sqrt{3649}-516}{-360}
x=\frac{-516±12\sqrt{3649}}{-360} tenglamasini yeching, bunda ± manfiy. -516 dan 12\sqrt{3649} ni ayirish.
x=\frac{\sqrt{3649}+43}{30}
-516-12\sqrt{3649} ni -360 ga bo'lish.
x=\frac{43-\sqrt{3649}}{30} x=\frac{\sqrt{3649}+43}{30}
Tenglama yechildi.
360+x\times 156=\left(x-2\right)\times 180x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
360+x\times 156=\left(180x-360\right)x
x-2 ga 180 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
360+x\times 156=180x^{2}-360x
180x-360 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
360+x\times 156-180x^{2}=-360x
Ikkala tarafdan 180x^{2} ni ayirish.
360+x\times 156-180x^{2}+360x=0
360x ni ikki tarafga qo’shing.
360+516x-180x^{2}=0
516x ni olish uchun x\times 156 va 360x ni birlashtirish.
516x-180x^{2}=-360
Ikkala tarafdan 360 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-180x^{2}+516x=-360
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-180x^{2}+516x}{-180}=-\frac{360}{-180}
Ikki tarafini -180 ga bo‘ling.
x^{2}+\frac{516}{-180}x=-\frac{360}{-180}
-180 ga bo'lish -180 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{43}{15}x=-\frac{360}{-180}
\frac{516}{-180} ulushini 12 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{43}{15}x=2
-360 ni -180 ga bo'lish.
x^{2}-\frac{43}{15}x+\left(-\frac{43}{30}\right)^{2}=2+\left(-\frac{43}{30}\right)^{2}
-\frac{43}{15} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{43}{30} olish uchun. Keyin, -\frac{43}{30} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{43}{15}x+\frac{1849}{900}=2+\frac{1849}{900}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{43}{30} kvadratini chiqarish.
x^{2}-\frac{43}{15}x+\frac{1849}{900}=\frac{3649}{900}
2 ni \frac{1849}{900} ga qo'shish.
\left(x-\frac{43}{30}\right)^{2}=\frac{3649}{900}
x^{2}-\frac{43}{15}x+\frac{1849}{900} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{43}{30}\right)^{2}}=\sqrt{\frac{3649}{900}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{43}{30}=\frac{\sqrt{3649}}{30} x-\frac{43}{30}=-\frac{\sqrt{3649}}{30}
Qisqartirish.
x=\frac{\sqrt{3649}+43}{30} x=\frac{43-\sqrt{3649}}{30}
\frac{43}{30} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}