y uchun yechish
y=-\frac{5x\left(20-x\right)}{x^{2}-10x-100}
x\neq 20\text{ and }x\neq 0\text{ and }x\neq 5\sqrt{5}+5\text{ and }x\neq 5-5\sqrt{5}\text{ and }x\neq -\frac{5}{3}
x uchun yechish
\left\{\begin{matrix}x=\frac{5\left(-\sqrt{5\left(y^{2}-8y+20\right)}+y-10\right)}{y-5}\text{, }&y\neq 0\text{ and }y\neq 5\\x=\frac{5\left(\sqrt{5\left(y^{2}-8y+20\right)}+y-10\right)}{y-5}\text{, }&y\neq -\frac{65}{29}\text{ and }y\neq 5\text{ and }y\neq 0\\x=10\text{, }&y=5\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
-30x\left(y+20-x\right)=y\left(x-20\right)\times 6\left(x+5\right)
y qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini y\left(x-20\right)\left(3x+5\right) ga, \left(3x+5\right)y\left(20-x\right),3x+5 ning eng kichik karralisiga ko‘paytiring.
-30xy-600x+30x^{2}=y\left(x-20\right)\times 6\left(x+5\right)
-30x ga y+20-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-30xy-600x+30x^{2}=\left(yx-20y\right)\times 6\left(x+5\right)
y ga x-20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-30xy-600x+30x^{2}=\left(6yx-120y\right)\left(x+5\right)
yx-20y ga 6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-30xy-600x+30x^{2}=6yx^{2}-90yx-600y
6yx-120y ga x+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-30xy-600x+30x^{2}-6yx^{2}=-90yx-600y
Ikkala tarafdan 6yx^{2} ni ayirish.
-30xy-600x+30x^{2}-6yx^{2}+90yx=-600y
90yx ni ikki tarafga qo’shing.
-30xy-600x+30x^{2}-6yx^{2}+90yx+600y=0
600y ni ikki tarafga qo’shing.
60xy-600x+30x^{2}-6yx^{2}+600y=0
60xy ni olish uchun -30xy va 90yx ni birlashtirish.
60xy+30x^{2}-6yx^{2}+600y=600x
600x ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
60xy-6yx^{2}+600y=600x-30x^{2}
Ikkala tarafdan 30x^{2} ni ayirish.
\left(60x-6x^{2}+600\right)y=600x-30x^{2}
y'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(600+60x-6x^{2}\right)y=600x-30x^{2}
Tenglama standart shaklda.
\frac{\left(600+60x-6x^{2}\right)y}{600+60x-6x^{2}}=\frac{30x\left(20-x\right)}{600+60x-6x^{2}}
Ikki tarafini 60x-6x^{2}+600 ga bo‘ling.
y=\frac{30x\left(20-x\right)}{600+60x-6x^{2}}
60x-6x^{2}+600 ga bo'lish 60x-6x^{2}+600 ga ko'paytirishni bekor qiladi.
y=\frac{5x\left(20-x\right)}{100+10x-x^{2}}
30x\left(20-x\right) ni 60x-6x^{2}+600 ga bo'lish.
y=\frac{5x\left(20-x\right)}{100+10x-x^{2}}\text{, }y\neq 0
y qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}