x uchun yechish
x=\frac{2\sqrt{31}-23}{15}\approx -0,790964752
x=\frac{-2\sqrt{31}-23}{15}\approx -2,275701915
Grafik
Baham ko'rish
Klipbordga nusxa olish
3-x=\left(x+1\right)\left(x+2\right)\times 15
x qiymati -2,-1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x+1\right)\left(x+2\right) ga ko'paytirish.
3-x=\left(x^{2}+3x+2\right)\times 15
x+1 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3-x=15x^{2}+45x+30
x^{2}+3x+2 ga 15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3-x-15x^{2}=45x+30
Ikkala tarafdan 15x^{2} ni ayirish.
3-x-15x^{2}-45x=30
Ikkala tarafdan 45x ni ayirish.
3-46x-15x^{2}=30
-46x ni olish uchun -x va -45x ni birlashtirish.
3-46x-15x^{2}-30=0
Ikkala tarafdan 30 ni ayirish.
-27-46x-15x^{2}=0
-27 olish uchun 3 dan 30 ni ayirish.
-15x^{2}-46x-27=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-46\right)±\sqrt{\left(-46\right)^{2}-4\left(-15\right)\left(-27\right)}}{2\left(-15\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -15 ni a, -46 ni b va -27 ni c bilan almashtiring.
x=\frac{-\left(-46\right)±\sqrt{2116-4\left(-15\right)\left(-27\right)}}{2\left(-15\right)}
-46 kvadratini chiqarish.
x=\frac{-\left(-46\right)±\sqrt{2116+60\left(-27\right)}}{2\left(-15\right)}
-4 ni -15 marotabaga ko'paytirish.
x=\frac{-\left(-46\right)±\sqrt{2116-1620}}{2\left(-15\right)}
60 ni -27 marotabaga ko'paytirish.
x=\frac{-\left(-46\right)±\sqrt{496}}{2\left(-15\right)}
2116 ni -1620 ga qo'shish.
x=\frac{-\left(-46\right)±4\sqrt{31}}{2\left(-15\right)}
496 ning kvadrat ildizini chiqarish.
x=\frac{46±4\sqrt{31}}{2\left(-15\right)}
-46 ning teskarisi 46 ga teng.
x=\frac{46±4\sqrt{31}}{-30}
2 ni -15 marotabaga ko'paytirish.
x=\frac{4\sqrt{31}+46}{-30}
x=\frac{46±4\sqrt{31}}{-30} tenglamasini yeching, bunda ± musbat. 46 ni 4\sqrt{31} ga qo'shish.
x=\frac{-2\sqrt{31}-23}{15}
46+4\sqrt{31} ni -30 ga bo'lish.
x=\frac{46-4\sqrt{31}}{-30}
x=\frac{46±4\sqrt{31}}{-30} tenglamasini yeching, bunda ± manfiy. 46 dan 4\sqrt{31} ni ayirish.
x=\frac{2\sqrt{31}-23}{15}
46-4\sqrt{31} ni -30 ga bo'lish.
x=\frac{-2\sqrt{31}-23}{15} x=\frac{2\sqrt{31}-23}{15}
Tenglama yechildi.
3-x=\left(x+1\right)\left(x+2\right)\times 15
x qiymati -2,-1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x+1\right)\left(x+2\right) ga ko'paytirish.
3-x=\left(x^{2}+3x+2\right)\times 15
x+1 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3-x=15x^{2}+45x+30
x^{2}+3x+2 ga 15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3-x-15x^{2}=45x+30
Ikkala tarafdan 15x^{2} ni ayirish.
3-x-15x^{2}-45x=30
Ikkala tarafdan 45x ni ayirish.
3-46x-15x^{2}=30
-46x ni olish uchun -x va -45x ni birlashtirish.
-46x-15x^{2}=30-3
Ikkala tarafdan 3 ni ayirish.
-46x-15x^{2}=27
27 olish uchun 30 dan 3 ni ayirish.
-15x^{2}-46x=27
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-15x^{2}-46x}{-15}=\frac{27}{-15}
Ikki tarafini -15 ga bo‘ling.
x^{2}+\left(-\frac{46}{-15}\right)x=\frac{27}{-15}
-15 ga bo'lish -15 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{46}{15}x=\frac{27}{-15}
-46 ni -15 ga bo'lish.
x^{2}+\frac{46}{15}x=-\frac{9}{5}
\frac{27}{-15} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{46}{15}x+\left(\frac{23}{15}\right)^{2}=-\frac{9}{5}+\left(\frac{23}{15}\right)^{2}
\frac{46}{15} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{23}{15} olish uchun. Keyin, \frac{23}{15} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{46}{15}x+\frac{529}{225}=-\frac{9}{5}+\frac{529}{225}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{23}{15} kvadratini chiqarish.
x^{2}+\frac{46}{15}x+\frac{529}{225}=\frac{124}{225}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{9}{5} ni \frac{529}{225} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{23}{15}\right)^{2}=\frac{124}{225}
x^{2}+\frac{46}{15}x+\frac{529}{225} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{23}{15}\right)^{2}}=\sqrt{\frac{124}{225}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{23}{15}=\frac{2\sqrt{31}}{15} x+\frac{23}{15}=-\frac{2\sqrt{31}}{15}
Qisqartirish.
x=\frac{2\sqrt{31}-23}{15} x=\frac{-2\sqrt{31}-23}{15}
Tenglamaning ikkala tarafidan \frac{23}{15} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}