x uchun yechish
x=-2
x=\frac{1}{2}=0,5
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x+1\right)\times 3+\left(x-1\right)\times 3=-4\left(x-1\right)\left(x+1\right)
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga, x-1,x+1 ning eng kichik karralisiga ko‘paytiring.
3x+3+\left(x-1\right)\times 3=-4\left(x-1\right)\left(x+1\right)
x+1 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x+3+3x-3=-4\left(x-1\right)\left(x+1\right)
x-1 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x+3-3=-4\left(x-1\right)\left(x+1\right)
6x ni olish uchun 3x va 3x ni birlashtirish.
6x=-4\left(x-1\right)\left(x+1\right)
0 olish uchun 3 dan 3 ni ayirish.
6x=\left(-4x+4\right)\left(x+1\right)
-4 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x=-4x^{2}+4
-4x+4 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
6x+4x^{2}=4
4x^{2} ni ikki tarafga qo’shing.
6x+4x^{2}-4=0
Ikkala tarafdan 4 ni ayirish.
4x^{2}+6x-4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{6^{2}-4\times 4\left(-4\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 6 ni b va -4 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\times 4\left(-4\right)}}{2\times 4}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-16\left(-4\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36+64}}{2\times 4}
-16 ni -4 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{100}}{2\times 4}
36 ni 64 ga qo'shish.
x=\frac{-6±10}{2\times 4}
100 ning kvadrat ildizini chiqarish.
x=\frac{-6±10}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{4}{8}
x=\frac{-6±10}{8} tenglamasini yeching, bunda ± musbat. -6 ni 10 ga qo'shish.
x=\frac{1}{2}
\frac{4}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{16}{8}
x=\frac{-6±10}{8} tenglamasini yeching, bunda ± manfiy. -6 dan 10 ni ayirish.
x=-2
-16 ni 8 ga bo'lish.
x=\frac{1}{2} x=-2
Tenglama yechildi.
\left(x+1\right)\times 3+\left(x-1\right)\times 3=-4\left(x-1\right)\left(x+1\right)
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga, x-1,x+1 ning eng kichik karralisiga ko‘paytiring.
3x+3+\left(x-1\right)\times 3=-4\left(x-1\right)\left(x+1\right)
x+1 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x+3+3x-3=-4\left(x-1\right)\left(x+1\right)
x-1 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x+3-3=-4\left(x-1\right)\left(x+1\right)
6x ni olish uchun 3x va 3x ni birlashtirish.
6x=-4\left(x-1\right)\left(x+1\right)
0 olish uchun 3 dan 3 ni ayirish.
6x=\left(-4x+4\right)\left(x+1\right)
-4 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x=-4x^{2}+4
-4x+4 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
6x+4x^{2}=4
4x^{2} ni ikki tarafga qo’shing.
4x^{2}+6x=4
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{4x^{2}+6x}{4}=\frac{4}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\frac{6}{4}x=\frac{4}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{2}x=\frac{4}{4}
\frac{6}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{3}{2}x=1
4 ni 4 ga bo'lish.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=1+\left(\frac{3}{4}\right)^{2}
\frac{3}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{4} olish uchun. Keyin, \frac{3}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{2}x+\frac{9}{16}=1+\frac{9}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{4} kvadratini chiqarish.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{25}{16}
1 ni \frac{9}{16} ga qo'shish.
\left(x+\frac{3}{4}\right)^{2}=\frac{25}{16}
x^{2}+\frac{3}{2}x+\frac{9}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{4}=\frac{5}{4} x+\frac{3}{4}=-\frac{5}{4}
Qisqartirish.
x=\frac{1}{2} x=-2
Tenglamaning ikkala tarafidan \frac{3}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}