Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{3\left(x-3\right)}{\left(x-3\right)\left(2x-5\right)}-\frac{4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2x-5 va x-3 ning eng kichik umumiy karralisi \left(x-3\right)\left(2x-5\right). \frac{3}{2x-5} ni \frac{x-3}{x-3} marotabaga ko'paytirish. \frac{4}{x-3} ni \frac{2x-5}{2x-5} marotabaga ko'paytirish.
\frac{3\left(x-3\right)-4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)}
\frac{3\left(x-3\right)}{\left(x-3\right)\left(2x-5\right)} va \frac{4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{3x-9-8x+20}{\left(x-3\right)\left(2x-5\right)}
3\left(x-3\right)-4\left(2x-5\right) ichidagi ko‘paytirishlarni bajaring.
\frac{-5x+11}{\left(x-3\right)\left(2x-5\right)}
3x-9-8x+20 kabi iboralarga o‘xshab birlashtiring.
\frac{-5x+11}{2x^{2}-11x+15}
\left(x-3\right)\left(2x-5\right) ni kengaytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x-3\right)}{\left(x-3\right)\left(2x-5\right)}-\frac{4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2x-5 va x-3 ning eng kichik umumiy karralisi \left(x-3\right)\left(2x-5\right). \frac{3}{2x-5} ni \frac{x-3}{x-3} marotabaga ko'paytirish. \frac{4}{x-3} ni \frac{2x-5}{2x-5} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x-3\right)-4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)})
\frac{3\left(x-3\right)}{\left(x-3\right)\left(2x-5\right)} va \frac{4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x-9-8x+20}{\left(x-3\right)\left(2x-5\right)})
3\left(x-3\right)-4\left(2x-5\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x+11}{\left(x-3\right)\left(2x-5\right)})
3x-9-8x+20 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x+11}{2x^{2}-5x-6x+15})
x-3 ifodaning har bir elementini 2x-5 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x+11}{2x^{2}-11x+15})
-11x ni olish uchun -5x va -6x ni birlashtirish.
\frac{\left(2x^{2}-11x^{1}+15\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{1}+11)-\left(-5x^{1}+11\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}-11x^{1}+15)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(2x^{2}-11x^{1}+15\right)\left(-5\right)x^{1-1}-\left(-5x^{1}+11\right)\left(2\times 2x^{2-1}-11x^{1-1}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(2x^{2}-11x^{1}+15\right)\left(-5\right)x^{0}-\left(-5x^{1}+11\right)\left(4x^{1}-11x^{0}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
Qisqartirish.
\frac{2x^{2}\left(-5\right)x^{0}-11x^{1}\left(-5\right)x^{0}+15\left(-5\right)x^{0}-\left(-5x^{1}+11\right)\left(4x^{1}-11x^{0}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
2x^{2}-11x^{1}+15 ni -5x^{0} marotabaga ko'paytirish.
\frac{2x^{2}\left(-5\right)x^{0}-11x^{1}\left(-5\right)x^{0}+15\left(-5\right)x^{0}-\left(-5x^{1}\times 4x^{1}-5x^{1}\left(-11\right)x^{0}+11\times 4x^{1}+11\left(-11\right)x^{0}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
-5x^{1}+11 ni 4x^{1}-11x^{0} marotabaga ko'paytirish.
\frac{2\left(-5\right)x^{2}-11\left(-5\right)x^{1}+15\left(-5\right)x^{0}-\left(-5\times 4x^{1+1}-5\left(-11\right)x^{1}+11\times 4x^{1}+11\left(-11\right)x^{0}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{-10x^{2}+55x^{1}-75x^{0}-\left(-20x^{2}+55x^{1}+44x^{1}-121x^{0}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
Qisqartirish.
\frac{10x^{2}-44x^{1}+46x^{0}}{\left(2x^{2}-11x^{1}+15\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{10x^{2}-44x+46x^{0}}{\left(2x^{2}-11x+15\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{10x^{2}-44x+46\times 1}{\left(2x^{2}-11x+15\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{10x^{2}-44x+46}{\left(2x^{2}-11x+15\right)^{2}}
Har qanday t sharti uchun t\times 1=t va 1t=t.