Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x\times \frac{3}{2}+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2x ga, 2,x ning eng kichik karralisiga ko‘paytiring.
3x+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
3 hosil qilish uchun 2 va \frac{3}{2} ni ko'paytirish.
3x+4x\left(x+25\right)^{-1}\times \frac{5253}{2}=2\times 300+2x\times \frac{1}{2}
\frac{5253}{2} olish uchun 2625 va \frac{3}{2}'ni qo'shing.
3x+10506x\left(x+25\right)^{-1}=2\times 300+2x\times \frac{1}{2}
10506 hosil qilish uchun 4 va \frac{5253}{2} ni ko'paytirish.
3x+10506x\left(x+25\right)^{-1}=600+2x\times \frac{1}{2}
600 hosil qilish uchun 2 va 300 ni ko'paytirish.
3x+10506x\left(x+25\right)^{-1}=600+x
1 hosil qilish uchun 2 va \frac{1}{2} ni ko'paytirish.
3x+10506x\left(x+25\right)^{-1}-600=x
Ikkala tarafdan 600 ni ayirish.
3x+10506x\left(x+25\right)^{-1}-600-x=0
Ikkala tarafdan x ni ayirish.
2x+10506x\left(x+25\right)^{-1}-600=0
2x ni olish uchun 3x va -x ni birlashtirish.
2x+10506\times \frac{1}{x+25}x-600=0
Shartlarni qayta saralash.
2x\left(x+25\right)+10506\times 1x+\left(x+25\right)\left(-600\right)=0
x qiymati -25 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+25 ga ko'paytirish.
2x^{2}+50x+10506\times 1x+\left(x+25\right)\left(-600\right)=0
2x ga x+25 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+50x+10506x+\left(x+25\right)\left(-600\right)=0
10506 hosil qilish uchun 10506 va 1 ni ko'paytirish.
2x^{2}+10556x+\left(x+25\right)\left(-600\right)=0
10556x ni olish uchun 50x va 10506x ni birlashtirish.
2x^{2}+10556x-600x-15000=0
x+25 ga -600 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+9956x-15000=0
9956x ni olish uchun 10556x va -600x ni birlashtirish.
x=\frac{-9956±\sqrt{9956^{2}-4\times 2\left(-15000\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 9956 ni b va -15000 ni c bilan almashtiring.
x=\frac{-9956±\sqrt{99121936-4\times 2\left(-15000\right)}}{2\times 2}
9956 kvadratini chiqarish.
x=\frac{-9956±\sqrt{99121936-8\left(-15000\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-9956±\sqrt{99121936+120000}}{2\times 2}
-8 ni -15000 marotabaga ko'paytirish.
x=\frac{-9956±\sqrt{99241936}}{2\times 2}
99121936 ni 120000 ga qo'shish.
x=\frac{-9956±4\sqrt{6202621}}{2\times 2}
99241936 ning kvadrat ildizini chiqarish.
x=\frac{-9956±4\sqrt{6202621}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{4\sqrt{6202621}-9956}{4}
x=\frac{-9956±4\sqrt{6202621}}{4} tenglamasini yeching, bunda ± musbat. -9956 ni 4\sqrt{6202621} ga qo'shish.
x=\sqrt{6202621}-2489
-9956+4\sqrt{6202621} ni 4 ga bo'lish.
x=\frac{-4\sqrt{6202621}-9956}{4}
x=\frac{-9956±4\sqrt{6202621}}{4} tenglamasini yeching, bunda ± manfiy. -9956 dan 4\sqrt{6202621} ni ayirish.
x=-\sqrt{6202621}-2489
-9956-4\sqrt{6202621} ni 4 ga bo'lish.
x=\sqrt{6202621}-2489 x=-\sqrt{6202621}-2489
Tenglama yechildi.
2x\times \frac{3}{2}+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2x ga, 2,x ning eng kichik karralisiga ko‘paytiring.
3x+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
3 hosil qilish uchun 2 va \frac{3}{2} ni ko'paytirish.
3x+4x\left(x+25\right)^{-1}\times \frac{5253}{2}=2\times 300+2x\times \frac{1}{2}
\frac{5253}{2} olish uchun 2625 va \frac{3}{2}'ni qo'shing.
3x+10506x\left(x+25\right)^{-1}=2\times 300+2x\times \frac{1}{2}
10506 hosil qilish uchun 4 va \frac{5253}{2} ni ko'paytirish.
3x+10506x\left(x+25\right)^{-1}=600+2x\times \frac{1}{2}
600 hosil qilish uchun 2 va 300 ni ko'paytirish.
3x+10506x\left(x+25\right)^{-1}=600+x
1 hosil qilish uchun 2 va \frac{1}{2} ni ko'paytirish.
3x+10506x\left(x+25\right)^{-1}-x=600
Ikkala tarafdan x ni ayirish.
2x+10506x\left(x+25\right)^{-1}=600
2x ni olish uchun 3x va -x ni birlashtirish.
2x+10506\times \frac{1}{x+25}x=600
Shartlarni qayta saralash.
2x\left(x+25\right)+10506\times 1x=600\left(x+25\right)
x qiymati -25 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+25 ga ko'paytirish.
2x^{2}+50x+10506\times 1x=600\left(x+25\right)
2x ga x+25 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+50x+10506x=600\left(x+25\right)
10506 hosil qilish uchun 10506 va 1 ni ko'paytirish.
2x^{2}+10556x=600\left(x+25\right)
10556x ni olish uchun 50x va 10506x ni birlashtirish.
2x^{2}+10556x=600x+15000
600 ga x+25 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+10556x-600x=15000
Ikkala tarafdan 600x ni ayirish.
2x^{2}+9956x=15000
9956x ni olish uchun 10556x va -600x ni birlashtirish.
\frac{2x^{2}+9956x}{2}=\frac{15000}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{9956}{2}x=\frac{15000}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+4978x=\frac{15000}{2}
9956 ni 2 ga bo'lish.
x^{2}+4978x=7500
15000 ni 2 ga bo'lish.
x^{2}+4978x+2489^{2}=7500+2489^{2}
4978 ni bo‘lish, x shartining koeffitsienti, 2 ga 2489 olish uchun. Keyin, 2489 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+4978x+6195121=7500+6195121
2489 kvadratini chiqarish.
x^{2}+4978x+6195121=6202621
7500 ni 6195121 ga qo'shish.
\left(x+2489\right)^{2}=6202621
x^{2}+4978x+6195121 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+2489\right)^{2}}=\sqrt{6202621}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+2489=\sqrt{6202621} x+2489=-\sqrt{6202621}
Qisqartirish.
x=\sqrt{6202621}-2489 x=-\sqrt{6202621}-2489
Tenglamaning ikkala tarafidan 2489 ni ayirish.
2x\times \frac{3}{2}+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2x ga, 2,x ning eng kichik karralisiga ko‘paytiring.
3x+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
3 hosil qilish uchun 2 va \frac{3}{2} ni ko'paytirish.
3x+4x\left(x+25\right)^{-1}\times \frac{5253}{2}=2\times 300+2x\times \frac{1}{2}
\frac{5253}{2} olish uchun 2625 va \frac{3}{2}'ni qo'shing.
3x+10506x\left(x+25\right)^{-1}=2\times 300+2x\times \frac{1}{2}
10506 hosil qilish uchun 4 va \frac{5253}{2} ni ko'paytirish.
3x+10506x\left(x+25\right)^{-1}=600+2x\times \frac{1}{2}
600 hosil qilish uchun 2 va 300 ni ko'paytirish.
3x+10506x\left(x+25\right)^{-1}=600+x
1 hosil qilish uchun 2 va \frac{1}{2} ni ko'paytirish.
3x+10506x\left(x+25\right)^{-1}-600=x
Ikkala tarafdan 600 ni ayirish.
3x+10506x\left(x+25\right)^{-1}-600-x=0
Ikkala tarafdan x ni ayirish.
2x+10506x\left(x+25\right)^{-1}-600=0
2x ni olish uchun 3x va -x ni birlashtirish.
2x+10506\times \frac{1}{x+25}x-600=0
Shartlarni qayta saralash.
2x\left(x+25\right)+10506\times 1x+\left(x+25\right)\left(-600\right)=0
x qiymati -25 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+25 ga ko'paytirish.
2x^{2}+50x+10506\times 1x+\left(x+25\right)\left(-600\right)=0
2x ga x+25 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+50x+10506x+\left(x+25\right)\left(-600\right)=0
10506 hosil qilish uchun 10506 va 1 ni ko'paytirish.
2x^{2}+10556x+\left(x+25\right)\left(-600\right)=0
10556x ni olish uchun 50x va 10506x ni birlashtirish.
2x^{2}+10556x-600x-15000=0
x+25 ga -600 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+9956x-15000=0
9956x ni olish uchun 10556x va -600x ni birlashtirish.
x=\frac{-9956±\sqrt{9956^{2}-4\times 2\left(-15000\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 9956 ni b va -15000 ni c bilan almashtiring.
x=\frac{-9956±\sqrt{99121936-4\times 2\left(-15000\right)}}{2\times 2}
9956 kvadratini chiqarish.
x=\frac{-9956±\sqrt{99121936-8\left(-15000\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-9956±\sqrt{99121936+120000}}{2\times 2}
-8 ni -15000 marotabaga ko'paytirish.
x=\frac{-9956±\sqrt{99241936}}{2\times 2}
99121936 ni 120000 ga qo'shish.
x=\frac{-9956±4\sqrt{6202621}}{2\times 2}
99241936 ning kvadrat ildizini chiqarish.
x=\frac{-9956±4\sqrt{6202621}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{4\sqrt{6202621}-9956}{4}
x=\frac{-9956±4\sqrt{6202621}}{4} tenglamasini yeching, bunda ± musbat. -9956 ni 4\sqrt{6202621} ga qo'shish.
x=\sqrt{6202621}-2489
-9956+4\sqrt{6202621} ni 4 ga bo'lish.
x=\frac{-4\sqrt{6202621}-9956}{4}
x=\frac{-9956±4\sqrt{6202621}}{4} tenglamasini yeching, bunda ± manfiy. -9956 dan 4\sqrt{6202621} ni ayirish.
x=-\sqrt{6202621}-2489
-9956-4\sqrt{6202621} ni 4 ga bo'lish.
x=\sqrt{6202621}-2489 x=-\sqrt{6202621}-2489
Tenglama yechildi.
2x\times \frac{3}{2}+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2x ga, 2,x ning eng kichik karralisiga ko‘paytiring.
3x+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
3 hosil qilish uchun 2 va \frac{3}{2} ni ko'paytirish.
3x+4x\left(x+25\right)^{-1}\times \frac{5253}{2}=2\times 300+2x\times \frac{1}{2}
\frac{5253}{2} olish uchun 2625 va \frac{3}{2}'ni qo'shing.
3x+10506x\left(x+25\right)^{-1}=2\times 300+2x\times \frac{1}{2}
10506 hosil qilish uchun 4 va \frac{5253}{2} ni ko'paytirish.
3x+10506x\left(x+25\right)^{-1}=600+2x\times \frac{1}{2}
600 hosil qilish uchun 2 va 300 ni ko'paytirish.
3x+10506x\left(x+25\right)^{-1}=600+x
1 hosil qilish uchun 2 va \frac{1}{2} ni ko'paytirish.
3x+10506x\left(x+25\right)^{-1}-x=600
Ikkala tarafdan x ni ayirish.
2x+10506x\left(x+25\right)^{-1}=600
2x ni olish uchun 3x va -x ni birlashtirish.
2x+10506\times \frac{1}{x+25}x=600
Shartlarni qayta saralash.
2x\left(x+25\right)+10506\times 1x=600\left(x+25\right)
x qiymati -25 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+25 ga ko'paytirish.
2x^{2}+50x+10506\times 1x=600\left(x+25\right)
2x ga x+25 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+50x+10506x=600\left(x+25\right)
10506 hosil qilish uchun 10506 va 1 ni ko'paytirish.
2x^{2}+10556x=600\left(x+25\right)
10556x ni olish uchun 50x va 10506x ni birlashtirish.
2x^{2}+10556x=600x+15000
600 ga x+25 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+10556x-600x=15000
Ikkala tarafdan 600x ni ayirish.
2x^{2}+9956x=15000
9956x ni olish uchun 10556x va -600x ni birlashtirish.
\frac{2x^{2}+9956x}{2}=\frac{15000}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{9956}{2}x=\frac{15000}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+4978x=\frac{15000}{2}
9956 ni 2 ga bo'lish.
x^{2}+4978x=7500
15000 ni 2 ga bo'lish.
x^{2}+4978x+2489^{2}=7500+2489^{2}
4978 ni bo‘lish, x shartining koeffitsienti, 2 ga 2489 olish uchun. Keyin, 2489 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+4978x+6195121=7500+6195121
2489 kvadratini chiqarish.
x^{2}+4978x+6195121=6202621
7500 ni 6195121 ga qo'shish.
\left(x+2489\right)^{2}=6202621
x^{2}+4978x+6195121 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+2489\right)^{2}}=\sqrt{6202621}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+2489=\sqrt{6202621} x+2489=-\sqrt{6202621}
Qisqartirish.
x=\sqrt{6202621}-2489 x=-\sqrt{6202621}-2489
Tenglamaning ikkala tarafidan 2489 ni ayirish.