n uchun yechish
n=\sqrt{10}+1\approx 4,16227766
n=1-\sqrt{10}\approx -2,16227766
Baham ko'rish
Klipbordga nusxa olish
3\times 3=n\left(n-4\right)+n\times 2
n qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3n^{3} ga, n^{3},3n^{2} ning eng kichik karralisiga ko‘paytiring.
9=n\left(n-4\right)+n\times 2
9 hosil qilish uchun 3 va 3 ni ko'paytirish.
9=n^{2}-4n+n\times 2
n ga n-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9=n^{2}-2n
-2n ni olish uchun -4n va n\times 2 ni birlashtirish.
n^{2}-2n=9
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
n^{2}-2n-9=0
Ikkala tarafdan 9 ni ayirish.
n=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-9\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -2 ni b va -9 ni c bilan almashtiring.
n=\frac{-\left(-2\right)±\sqrt{4-4\left(-9\right)}}{2}
-2 kvadratini chiqarish.
n=\frac{-\left(-2\right)±\sqrt{4+36}}{2}
-4 ni -9 marotabaga ko'paytirish.
n=\frac{-\left(-2\right)±\sqrt{40}}{2}
4 ni 36 ga qo'shish.
n=\frac{-\left(-2\right)±2\sqrt{10}}{2}
40 ning kvadrat ildizini chiqarish.
n=\frac{2±2\sqrt{10}}{2}
-2 ning teskarisi 2 ga teng.
n=\frac{2\sqrt{10}+2}{2}
n=\frac{2±2\sqrt{10}}{2} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{10} ga qo'shish.
n=\sqrt{10}+1
2+2\sqrt{10} ni 2 ga bo'lish.
n=\frac{2-2\sqrt{10}}{2}
n=\frac{2±2\sqrt{10}}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{10} ni ayirish.
n=1-\sqrt{10}
2-2\sqrt{10} ni 2 ga bo'lish.
n=\sqrt{10}+1 n=1-\sqrt{10}
Tenglama yechildi.
3\times 3=n\left(n-4\right)+n\times 2
n qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3n^{3} ga, n^{3},3n^{2} ning eng kichik karralisiga ko‘paytiring.
9=n\left(n-4\right)+n\times 2
9 hosil qilish uchun 3 va 3 ni ko'paytirish.
9=n^{2}-4n+n\times 2
n ga n-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9=n^{2}-2n
-2n ni olish uchun -4n va n\times 2 ni birlashtirish.
n^{2}-2n=9
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
n^{2}-2n+1=9+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}-2n+1=10
9 ni 1 ga qo'shish.
\left(n-1\right)^{2}=10
n^{2}-2n+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n-1\right)^{2}}=\sqrt{10}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n-1=\sqrt{10} n-1=-\sqrt{10}
Qisqartirish.
n=\sqrt{10}+1 n=1-\sqrt{10}
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}