Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x+6=3x^{2}
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
2x+6-3x^{2}=0
Ikkala tarafdan 3x^{2} ni ayirish.
-3x^{2}+2x+6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)\times 6}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 2 ni b va 6 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-3\right)\times 6}}{2\left(-3\right)}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+12\times 6}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4+72}}{2\left(-3\right)}
12 ni 6 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{76}}{2\left(-3\right)}
4 ni 72 ga qo'shish.
x=\frac{-2±2\sqrt{19}}{2\left(-3\right)}
76 ning kvadrat ildizini chiqarish.
x=\frac{-2±2\sqrt{19}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{2\sqrt{19}-2}{-6}
x=\frac{-2±2\sqrt{19}}{-6} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{19} ga qo'shish.
x=\frac{1-\sqrt{19}}{3}
-2+2\sqrt{19} ni -6 ga bo'lish.
x=\frac{-2\sqrt{19}-2}{-6}
x=\frac{-2±2\sqrt{19}}{-6} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{19} ni ayirish.
x=\frac{\sqrt{19}+1}{3}
-2-2\sqrt{19} ni -6 ga bo'lish.
x=\frac{1-\sqrt{19}}{3} x=\frac{\sqrt{19}+1}{3}
Tenglama yechildi.
2x+6=3x^{2}
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
2x+6-3x^{2}=0
Ikkala tarafdan 3x^{2} ni ayirish.
2x-3x^{2}=-6
Ikkala tarafdan 6 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-3x^{2}+2x=-6
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-3x^{2}+2x}{-3}=-\frac{6}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\frac{2}{-3}x=-\frac{6}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{3}x=-\frac{6}{-3}
2 ni -3 ga bo'lish.
x^{2}-\frac{2}{3}x=2
-6 ni -3 ga bo'lish.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=2+\left(-\frac{1}{3}\right)^{2}
-\frac{2}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{3} olish uchun. Keyin, -\frac{1}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{3}x+\frac{1}{9}=2+\frac{1}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{3} kvadratini chiqarish.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{19}{9}
2 ni \frac{1}{9} ga qo'shish.
\left(x-\frac{1}{3}\right)^{2}=\frac{19}{9}
x^{2}-\frac{2}{3}x+\frac{1}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{19}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{3}=\frac{\sqrt{19}}{3} x-\frac{1}{3}=-\frac{\sqrt{19}}{3}
Qisqartirish.
x=\frac{\sqrt{19}+1}{3} x=\frac{1-\sqrt{19}}{3}
\frac{1}{3} ni tenglamaning ikkala tarafiga qo'shish.