Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x+\frac{4}{2x+12}
2 va 2 ni qisqartiring.
x+\frac{4}{2\left(x+6\right)}
Faktor: 2x+12.
\frac{x\times 2\left(x+6\right)}{2\left(x+6\right)}+\frac{4}{2\left(x+6\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x ni \frac{2\left(x+6\right)}{2\left(x+6\right)} marotabaga ko'paytirish.
\frac{x\times 2\left(x+6\right)+4}{2\left(x+6\right)}
\frac{x\times 2\left(x+6\right)}{2\left(x+6\right)} va \frac{4}{2\left(x+6\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{2x^{2}+12x+4}{2\left(x+6\right)}
x\times 2\left(x+6\right)+4 ichidagi ko‘paytirishlarni bajaring.
\frac{2\left(x-\left(\sqrt{7}-3\right)\right)\left(x-\left(-\sqrt{7}-3\right)\right)}{2\left(x+6\right)}
\frac{2x^{2}+12x+4}{2\left(x+6\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\left(x-\left(\sqrt{7}-3\right)\right)\left(x-\left(-\sqrt{7}-3\right)\right)}{x+6}
Surat va maxrajdagi ikkala 2 ni qisqartiring.
\frac{\left(x-\sqrt{7}-\left(-3\right)\right)\left(x-\left(-\sqrt{7}-3\right)\right)}{x+6}
\sqrt{7}-3 teskarisini topish uchun har birining teskarisini toping.
\frac{\left(x-\sqrt{7}+3\right)\left(x-\left(-\sqrt{7}-3\right)\right)}{x+6}
-3 ning teskarisi 3 ga teng.
\frac{\left(x-\sqrt{7}+3\right)\left(x-\left(-\sqrt{7}\right)-\left(-3\right)\right)}{x+6}
-\sqrt{7}-3 teskarisini topish uchun har birining teskarisini toping.
\frac{\left(x-\sqrt{7}+3\right)\left(x+\sqrt{7}-\left(-3\right)\right)}{x+6}
-\sqrt{7} ning teskarisi \sqrt{7} ga teng.
\frac{\left(x-\sqrt{7}+3\right)\left(x+\sqrt{7}+3\right)}{x+6}
-3 ning teskarisi 3 ga teng.
\frac{x^{2}+x\sqrt{7}+3x-\sqrt{7}x-\left(\sqrt{7}\right)^{2}-3\sqrt{7}+3x+3\sqrt{7}+9}{x+6}
x-\sqrt{7}+3 ifodaning har bir elementini x+\sqrt{7}+3 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{x^{2}+3x-\left(\sqrt{7}\right)^{2}-3\sqrt{7}+3x+3\sqrt{7}+9}{x+6}
0 ni olish uchun x\sqrt{7} va -\sqrt{7}x ni birlashtirish.
\frac{x^{2}+3x-7-3\sqrt{7}+3x+3\sqrt{7}+9}{x+6}
\sqrt{7} kvadrati – 7.
\frac{x^{2}+6x-7-3\sqrt{7}+3\sqrt{7}+9}{x+6}
6x ni olish uchun 3x va 3x ni birlashtirish.
\frac{x^{2}+6x-7+9}{x+6}
0 ni olish uchun -3\sqrt{7} va 3\sqrt{7} ni birlashtirish.
\frac{x^{2}+6x+2}{x+6}
2 olish uchun -7 va 9'ni qo'shing.
\frac{\mathrm{d}}{\mathrm{d}x}(x+\frac{4}{2x+12})
2 va 2 ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}x}(x+\frac{4}{2\left(x+6\right)})
Faktor: 2x+12.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\times 2\left(x+6\right)}{2\left(x+6\right)}+\frac{4}{2\left(x+6\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x ni \frac{2\left(x+6\right)}{2\left(x+6\right)} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\times 2\left(x+6\right)+4}{2\left(x+6\right)})
\frac{x\times 2\left(x+6\right)}{2\left(x+6\right)} va \frac{4}{2\left(x+6\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}+12x+4}{2\left(x+6\right)})
x\times 2\left(x+6\right)+4 ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-\left(\sqrt{7}-3\right)\right)\left(x-\left(-\sqrt{7}-3\right)\right)}{2\left(x+6\right)})
\frac{2x^{2}+12x+4}{2\left(x+6\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-\left(\sqrt{7}-3\right)\right)\left(x-\left(-\sqrt{7}-3\right)\right)}{x+6})
Surat va maxrajdagi ikkala 2 ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-\sqrt{7}-\left(-3\right)\right)\left(x-\left(-\sqrt{7}-3\right)\right)}{x+6})
\sqrt{7}-3 teskarisini topish uchun har birining teskarisini toping.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-\sqrt{7}+3\right)\left(x-\left(-\sqrt{7}-3\right)\right)}{x+6})
-3 ning teskarisi 3 ga teng.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-\sqrt{7}+3\right)\left(x-\left(-\sqrt{7}\right)-\left(-3\right)\right)}{x+6})
-\sqrt{7}-3 teskarisini topish uchun har birining teskarisini toping.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-\sqrt{7}+3\right)\left(x+\sqrt{7}-\left(-3\right)\right)}{x+6})
-\sqrt{7} ning teskarisi \sqrt{7} ga teng.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-\sqrt{7}+3\right)\left(x+\sqrt{7}+3\right)}{x+6})
-3 ning teskarisi 3 ga teng.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+x\sqrt{7}+3x-\sqrt{7}x-\left(\sqrt{7}\right)^{2}-3\sqrt{7}+3x+3\sqrt{7}+9}{x+6})
x-\sqrt{7}+3 ifodaning har bir elementini x+\sqrt{7}+3 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+3x-\left(\sqrt{7}\right)^{2}-3\sqrt{7}+3x+3\sqrt{7}+9}{x+6})
0 ni olish uchun x\sqrt{7} va -\sqrt{7}x ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+3x-7-3\sqrt{7}+3x+3\sqrt{7}+9}{x+6})
\sqrt{7} kvadrati – 7.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+6x-7-3\sqrt{7}+3\sqrt{7}+9}{x+6})
6x ni olish uchun 3x va 3x ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+6x-7+9}{x+6})
0 ni olish uchun -3\sqrt{7} va 3\sqrt{7} ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+6x+2}{x+6})
2 olish uchun -7 va 9'ni qo'shing.
\frac{\left(x^{1}+6\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+6x^{1}+2)-\left(x^{2}+6x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+6)}{\left(x^{1}+6\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{1}+6\right)\left(2x^{2-1}+6x^{1-1}\right)-\left(x^{2}+6x^{1}+2\right)x^{1-1}}{\left(x^{1}+6\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{1}+6\right)\left(2x^{1}+6x^{0}\right)-\left(x^{2}+6x^{1}+2\right)x^{0}}{\left(x^{1}+6\right)^{2}}
Qisqartirish.
\frac{x^{1}\times 2x^{1}+x^{1}\times 6x^{0}+6\times 2x^{1}+6\times 6x^{0}-\left(x^{2}+6x^{1}+2\right)x^{0}}{\left(x^{1}+6\right)^{2}}
x^{1}+6 ni 2x^{1}+6x^{0} marotabaga ko'paytirish.
\frac{x^{1}\times 2x^{1}+x^{1}\times 6x^{0}+6\times 2x^{1}+6\times 6x^{0}-\left(x^{2}x^{0}+6x^{1}x^{0}+2x^{0}\right)}{\left(x^{1}+6\right)^{2}}
x^{2}+6x^{1}+2 ni x^{0} marotabaga ko'paytirish.
\frac{2x^{1+1}+6x^{1}+6\times 2x^{1}+6\times 6x^{0}-\left(x^{2}+6x^{1}+2x^{0}\right)}{\left(x^{1}+6\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{2x^{2}+6x^{1}+12x^{1}+36x^{0}-\left(x^{2}+6x^{1}+2x^{0}\right)}{\left(x^{1}+6\right)^{2}}
Qisqartirish.
\frac{x^{2}+12x^{1}+34x^{0}}{\left(x^{1}+6\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{x^{2}+12x+34x^{0}}{\left(x+6\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{x^{2}+12x+34\times 1}{\left(x+6\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{x^{2}+12x+34}{\left(x+6\right)^{2}}
Har qanday t sharti uchun t\times 1=t va 1t=t.