Baholash
\frac{48}{7\left(1+\sqrt{3}i\right)}\approx 1,714285714-2,969229956i
Ashyoviy qism
240Re(\frac{1}{35\left(1+\sqrt{3}i\right)})
Baham ko'rish
Klipbordga nusxa olish
\frac{240}{35+25i\sqrt{3}+i\sqrt{300}}
35 olish uchun 25 va 10'ni qo'shing.
\frac{240}{35+25i\sqrt{3}+i\times 10\sqrt{3}}
Faktor: 300=10^{2}\times 3. \sqrt{10^{2}\times 3} koʻpaytmasining kvadrat ildizini \sqrt{10^{2}}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 10^{2} ning kvadrat ildizini chiqarish.
\frac{240}{35+35i\sqrt{3}}
35i\sqrt{3} ni olish uchun 25i\sqrt{3} va 10i\sqrt{3} ni birlashtirish.
\frac{240\left(35-35i\sqrt{3}\right)}{\left(35+35i\sqrt{3}\right)\left(35-35i\sqrt{3}\right)}
\frac{240}{35+35i\sqrt{3}} maxrajini 35-35i\sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{240\left(35-35i\sqrt{3}\right)}{35^{2}-\left(35i\sqrt{3}\right)^{2}}
Hisoblang: \left(35+35i\sqrt{3}\right)\left(35-35i\sqrt{3}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(35i\sqrt{3}\right)^{2}}
2 daraja ko‘rsatkichini 35 ga hisoblang va 1225 ni qiymatni oling.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(35i\right)^{2}\left(\sqrt{3}\right)^{2}}
\left(35i\sqrt{3}\right)^{2} ni kengaytirish.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(-1225\left(\sqrt{3}\right)^{2}\right)}
2 daraja ko‘rsatkichini 35i ga hisoblang va -1225 ni qiymatni oling.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(-1225\times 3\right)}
\sqrt{3} kvadrati – 3.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(-3675\right)}
-3675 hosil qilish uchun -1225 va 3 ni ko'paytirish.
\frac{240\left(35-35i\sqrt{3}\right)}{1225+3675}
3675 hosil qilish uchun -1 va -3675 ni ko'paytirish.
\frac{240\left(35-35i\sqrt{3}\right)}{4900}
4900 olish uchun 1225 va 3675'ni qo'shing.
\frac{12}{245}\left(35-35i\sqrt{3}\right)
\frac{12}{245}\left(35-35i\sqrt{3}\right) ni olish uchun 240\left(35-35i\sqrt{3}\right) ni 4900 ga bo‘ling.
\frac{12}{245}\times 35+\frac{12}{245}\times \left(-35i\right)\sqrt{3}
\frac{12}{245} ga 35-35i\sqrt{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{12\times 35}{245}+\frac{12}{245}\times \left(-35i\right)\sqrt{3}
\frac{12}{245}\times 35 ni yagona kasrga aylantiring.
\frac{420}{245}+\frac{12}{245}\times \left(-35i\right)\sqrt{3}
420 hosil qilish uchun 12 va 35 ni ko'paytirish.
\frac{12}{7}+\frac{12}{245}\times \left(-35i\right)\sqrt{3}
\frac{420}{245} ulushini 35 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{12}{7}-\frac{12}{7}i\sqrt{3}
-\frac{12}{7}i hosil qilish uchun \frac{12}{245} va -35i ni ko'paytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}