x uchun yechish
x=12
x=155
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
\frac{ 2200 }{ 100-x } +15= \frac{ 22 \times 100 }{ 67-x }
Baham ko'rish
Klipbordga nusxa olish
\left(67-x\right)\times 2200+\left(x-100\right)\left(x-67\right)\times 15=\left(100-x\right)\times 22\times 100
x qiymati 67,100 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-100\right)\left(x-67\right) ga, 100-x,67-x ning eng kichik karralisiga ko‘paytiring.
147400-2200x+\left(x-100\right)\left(x-67\right)\times 15=\left(100-x\right)\times 22\times 100
67-x ga 2200 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
147400-2200x+\left(x^{2}-167x+6700\right)\times 15=\left(100-x\right)\times 22\times 100
x-100 ga x-67 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
147400-2200x+15x^{2}-2505x+100500=\left(100-x\right)\times 22\times 100
x^{2}-167x+6700 ga 15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
147400-4705x+15x^{2}+100500=\left(100-x\right)\times 22\times 100
-4705x ni olish uchun -2200x va -2505x ni birlashtirish.
247900-4705x+15x^{2}=\left(100-x\right)\times 22\times 100
247900 olish uchun 147400 va 100500'ni qo'shing.
247900-4705x+15x^{2}=\left(100-x\right)\times 2200
2200 hosil qilish uchun 22 va 100 ni ko'paytirish.
247900-4705x+15x^{2}=220000-2200x
100-x ga 2200 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
247900-4705x+15x^{2}-220000=-2200x
Ikkala tarafdan 220000 ni ayirish.
27900-4705x+15x^{2}=-2200x
27900 olish uchun 247900 dan 220000 ni ayirish.
27900-4705x+15x^{2}+2200x=0
2200x ni ikki tarafga qo’shing.
27900-2505x+15x^{2}=0
-2505x ni olish uchun -4705x va 2200x ni birlashtirish.
15x^{2}-2505x+27900=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-2505\right)±\sqrt{\left(-2505\right)^{2}-4\times 15\times 27900}}{2\times 15}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 15 ni a, -2505 ni b va 27900 ni c bilan almashtiring.
x=\frac{-\left(-2505\right)±\sqrt{6275025-4\times 15\times 27900}}{2\times 15}
-2505 kvadratini chiqarish.
x=\frac{-\left(-2505\right)±\sqrt{6275025-60\times 27900}}{2\times 15}
-4 ni 15 marotabaga ko'paytirish.
x=\frac{-\left(-2505\right)±\sqrt{6275025-1674000}}{2\times 15}
-60 ni 27900 marotabaga ko'paytirish.
x=\frac{-\left(-2505\right)±\sqrt{4601025}}{2\times 15}
6275025 ni -1674000 ga qo'shish.
x=\frac{-\left(-2505\right)±2145}{2\times 15}
4601025 ning kvadrat ildizini chiqarish.
x=\frac{2505±2145}{2\times 15}
-2505 ning teskarisi 2505 ga teng.
x=\frac{2505±2145}{30}
2 ni 15 marotabaga ko'paytirish.
x=\frac{4650}{30}
x=\frac{2505±2145}{30} tenglamasini yeching, bunda ± musbat. 2505 ni 2145 ga qo'shish.
x=155
4650 ni 30 ga bo'lish.
x=\frac{360}{30}
x=\frac{2505±2145}{30} tenglamasini yeching, bunda ± manfiy. 2505 dan 2145 ni ayirish.
x=12
360 ni 30 ga bo'lish.
x=155 x=12
Tenglama yechildi.
\left(67-x\right)\times 2200+\left(x-100\right)\left(x-67\right)\times 15=\left(100-x\right)\times 22\times 100
x qiymati 67,100 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-100\right)\left(x-67\right) ga, 100-x,67-x ning eng kichik karralisiga ko‘paytiring.
147400-2200x+\left(x-100\right)\left(x-67\right)\times 15=\left(100-x\right)\times 22\times 100
67-x ga 2200 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
147400-2200x+\left(x^{2}-167x+6700\right)\times 15=\left(100-x\right)\times 22\times 100
x-100 ga x-67 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
147400-2200x+15x^{2}-2505x+100500=\left(100-x\right)\times 22\times 100
x^{2}-167x+6700 ga 15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
147400-4705x+15x^{2}+100500=\left(100-x\right)\times 22\times 100
-4705x ni olish uchun -2200x va -2505x ni birlashtirish.
247900-4705x+15x^{2}=\left(100-x\right)\times 22\times 100
247900 olish uchun 147400 va 100500'ni qo'shing.
247900-4705x+15x^{2}=\left(100-x\right)\times 2200
2200 hosil qilish uchun 22 va 100 ni ko'paytirish.
247900-4705x+15x^{2}=220000-2200x
100-x ga 2200 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
247900-4705x+15x^{2}+2200x=220000
2200x ni ikki tarafga qo’shing.
247900-2505x+15x^{2}=220000
-2505x ni olish uchun -4705x va 2200x ni birlashtirish.
-2505x+15x^{2}=220000-247900
Ikkala tarafdan 247900 ni ayirish.
-2505x+15x^{2}=-27900
-27900 olish uchun 220000 dan 247900 ni ayirish.
15x^{2}-2505x=-27900
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{15x^{2}-2505x}{15}=-\frac{27900}{15}
Ikki tarafini 15 ga bo‘ling.
x^{2}+\left(-\frac{2505}{15}\right)x=-\frac{27900}{15}
15 ga bo'lish 15 ga ko'paytirishni bekor qiladi.
x^{2}-167x=-\frac{27900}{15}
-2505 ni 15 ga bo'lish.
x^{2}-167x=-1860
-27900 ni 15 ga bo'lish.
x^{2}-167x+\left(-\frac{167}{2}\right)^{2}=-1860+\left(-\frac{167}{2}\right)^{2}
-167 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{167}{2} olish uchun. Keyin, -\frac{167}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-167x+\frac{27889}{4}=-1860+\frac{27889}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{167}{2} kvadratini chiqarish.
x^{2}-167x+\frac{27889}{4}=\frac{20449}{4}
-1860 ni \frac{27889}{4} ga qo'shish.
\left(x-\frac{167}{2}\right)^{2}=\frac{20449}{4}
x^{2}-167x+\frac{27889}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{167}{2}\right)^{2}}=\sqrt{\frac{20449}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{167}{2}=\frac{143}{2} x-\frac{167}{2}=-\frac{143}{2}
Qisqartirish.
x=155 x=12
\frac{167}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}