Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x+5\right)\times 20=\left(x-5\right)\times 60+\left(x-5\right)\left(x+5\right)
x qiymati -5,5 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-5\right)\left(x+5\right) ga, x-5,x+5 ning eng kichik karralisiga ko‘paytiring.
20x+100=\left(x-5\right)\times 60+\left(x-5\right)\left(x+5\right)
x+5 ga 20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
20x+100=60x-300+\left(x-5\right)\left(x+5\right)
x-5 ga 60 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
20x+100=60x-300+x^{2}-25
Hisoblang: \left(x-5\right)\left(x+5\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 5 kvadratini chiqarish.
20x+100=60x-325+x^{2}
-325 olish uchun -300 dan 25 ni ayirish.
20x+100-60x=-325+x^{2}
Ikkala tarafdan 60x ni ayirish.
-40x+100=-325+x^{2}
-40x ni olish uchun 20x va -60x ni birlashtirish.
-40x+100-\left(-325\right)=x^{2}
Ikkala tarafdan -325 ni ayirish.
-40x+100+325=x^{2}
-325 ning teskarisi 325 ga teng.
-40x+100+325-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
-40x+425-x^{2}=0
425 olish uchun 100 va 325'ni qo'shing.
-x^{2}-40x+425=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\left(-1\right)\times 425}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -40 ni b va 425 ni c bilan almashtiring.
x=\frac{-\left(-40\right)±\sqrt{1600-4\left(-1\right)\times 425}}{2\left(-1\right)}
-40 kvadratini chiqarish.
x=\frac{-\left(-40\right)±\sqrt{1600+4\times 425}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-40\right)±\sqrt{1600+1700}}{2\left(-1\right)}
4 ni 425 marotabaga ko'paytirish.
x=\frac{-\left(-40\right)±\sqrt{3300}}{2\left(-1\right)}
1600 ni 1700 ga qo'shish.
x=\frac{-\left(-40\right)±10\sqrt{33}}{2\left(-1\right)}
3300 ning kvadrat ildizini chiqarish.
x=\frac{40±10\sqrt{33}}{2\left(-1\right)}
-40 ning teskarisi 40 ga teng.
x=\frac{40±10\sqrt{33}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{10\sqrt{33}+40}{-2}
x=\frac{40±10\sqrt{33}}{-2} tenglamasini yeching, bunda ± musbat. 40 ni 10\sqrt{33} ga qo'shish.
x=-5\sqrt{33}-20
40+10\sqrt{33} ni -2 ga bo'lish.
x=\frac{40-10\sqrt{33}}{-2}
x=\frac{40±10\sqrt{33}}{-2} tenglamasini yeching, bunda ± manfiy. 40 dan 10\sqrt{33} ni ayirish.
x=5\sqrt{33}-20
40-10\sqrt{33} ni -2 ga bo'lish.
x=-5\sqrt{33}-20 x=5\sqrt{33}-20
Tenglama yechildi.
\left(x+5\right)\times 20=\left(x-5\right)\times 60+\left(x-5\right)\left(x+5\right)
x qiymati -5,5 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-5\right)\left(x+5\right) ga, x-5,x+5 ning eng kichik karralisiga ko‘paytiring.
20x+100=\left(x-5\right)\times 60+\left(x-5\right)\left(x+5\right)
x+5 ga 20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
20x+100=60x-300+\left(x-5\right)\left(x+5\right)
x-5 ga 60 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
20x+100=60x-300+x^{2}-25
Hisoblang: \left(x-5\right)\left(x+5\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 5 kvadratini chiqarish.
20x+100=60x-325+x^{2}
-325 olish uchun -300 dan 25 ni ayirish.
20x+100-60x=-325+x^{2}
Ikkala tarafdan 60x ni ayirish.
-40x+100=-325+x^{2}
-40x ni olish uchun 20x va -60x ni birlashtirish.
-40x+100-x^{2}=-325
Ikkala tarafdan x^{2} ni ayirish.
-40x-x^{2}=-325-100
Ikkala tarafdan 100 ni ayirish.
-40x-x^{2}=-425
-425 olish uchun -325 dan 100 ni ayirish.
-x^{2}-40x=-425
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-40x}{-1}=-\frac{425}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{40}{-1}\right)x=-\frac{425}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+40x=-\frac{425}{-1}
-40 ni -1 ga bo'lish.
x^{2}+40x=425
-425 ni -1 ga bo'lish.
x^{2}+40x+20^{2}=425+20^{2}
40 ni bo‘lish, x shartining koeffitsienti, 2 ga 20 olish uchun. Keyin, 20 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+40x+400=425+400
20 kvadratini chiqarish.
x^{2}+40x+400=825
425 ni 400 ga qo'shish.
\left(x+20\right)^{2}=825
x^{2}+40x+400 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+20\right)^{2}}=\sqrt{825}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+20=5\sqrt{33} x+20=-5\sqrt{33}
Qisqartirish.
x=5\sqrt{33}-20 x=-5\sqrt{33}-20
Tenglamaning ikkala tarafidan 20 ni ayirish.