Baholash
-\frac{2}{41}+\frac{23}{41}i\approx -0,048780488+0,56097561i
Ashyoviy qism
-\frac{2}{41} = -0,04878048780487805
Viktorina
Complex Number
\frac{ 2+3i }{ 5-4i }
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(2+3i\right)\left(5+4i\right)}{\left(5-4i\right)\left(5+4i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 5+4i.
\frac{\left(2+3i\right)\left(5+4i\right)}{5^{2}-4^{2}i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+3i\right)\left(5+4i\right)}{41}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{2\times 5+2\times \left(4i\right)+3i\times 5+3\times 4i^{2}}{41}
Binomlarni ko‘paytirgandek 2+3i va 5+4i murakkab sonlarni ko‘paytiring.
\frac{2\times 5+2\times \left(4i\right)+3i\times 5+3\times 4\left(-1\right)}{41}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{10+8i+15i-12}{41}
2\times 5+2\times \left(4i\right)+3i\times 5+3\times 4\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{10-12+\left(8+15\right)i}{41}
10+8i+15i-12 ichida real va mavhum qismlarni birlashtiring.
\frac{-2+23i}{41}
10-12+\left(8+15\right)i ichida qo‘shishlarni bajaring.
-\frac{2}{41}+\frac{23}{41}i
-\frac{2}{41}+\frac{23}{41}i ni olish uchun -2+23i ni 41 ga bo‘ling.
Re(\frac{\left(2+3i\right)\left(5+4i\right)}{\left(5-4i\right)\left(5+4i\right)})
\frac{2+3i}{5-4i}ning surat va maxrajini murakkab tutash maxraj 5+4i bilan ko‘paytiring.
Re(\frac{\left(2+3i\right)\left(5+4i\right)}{5^{2}-4^{2}i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+3i\right)\left(5+4i\right)}{41})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{2\times 5+2\times \left(4i\right)+3i\times 5+3\times 4i^{2}}{41})
Binomlarni ko‘paytirgandek 2+3i va 5+4i murakkab sonlarni ko‘paytiring.
Re(\frac{2\times 5+2\times \left(4i\right)+3i\times 5+3\times 4\left(-1\right)}{41})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{10+8i+15i-12}{41})
2\times 5+2\times \left(4i\right)+3i\times 5+3\times 4\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{10-12+\left(8+15\right)i}{41})
10+8i+15i-12 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{-2+23i}{41})
10-12+\left(8+15\right)i ichida qo‘shishlarni bajaring.
Re(-\frac{2}{41}+\frac{23}{41}i)
-\frac{2}{41}+\frac{23}{41}i ni olish uchun -2+23i ni 41 ga bo‘ling.
-\frac{2}{41}
-\frac{2}{41}+\frac{23}{41}i ning real qismi – -\frac{2}{41}.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}