Baholash
\frac{x^{3}}{6y^{2}}
x ga nisbatan hosilani topish
\frac{\left(\frac{x}{y}\right)^{2}}{2}
Baham ko'rish
Klipbordga nusxa olish
\frac{2x^{2}y^{2}}{4x^{-1}y^{4}\times 3}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 2 va -3 ni qo‘shib, -1 ni oling.
\frac{x^{2}}{2\times 3\times \frac{1}{x}y^{2}}
Surat va maxrajdagi ikkala 2y^{2} ni qisqartiring.
\frac{x^{3}}{2\times 3y^{2}}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{x^{3}}{6y^{2}}
6 hosil qilish uchun 2 va 3 ni ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2y^{2}x^{3}}{12y^{4}}x^{2-2})
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}}{6y^{2}}x^{0})
Arifmetik hisobni amalga oshirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}}{6y^{2}})
Har qanday a raqami uchun (0 bundan mustasno) a^{0}=1.
0
Konstantaning hosilasi 0 ga teng.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}