Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x-2\right)\times 2+\left(x-3\right)\times 3=3\left(x-3\right)\left(x-2\right)
x qiymati 2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right) ga, x-3,x-2 ning eng kichik karralisiga ko‘paytiring.
2x-4+\left(x-3\right)\times 3=3\left(x-3\right)\left(x-2\right)
x-2 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x-4+3x-9=3\left(x-3\right)\left(x-2\right)
x-3 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x-4-9=3\left(x-3\right)\left(x-2\right)
5x ni olish uchun 2x va 3x ni birlashtirish.
5x-13=3\left(x-3\right)\left(x-2\right)
-13 olish uchun -4 dan 9 ni ayirish.
5x-13=\left(3x-9\right)\left(x-2\right)
3 ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x-13=3x^{2}-15x+18
3x-9 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5x-13-3x^{2}=-15x+18
Ikkala tarafdan 3x^{2} ni ayirish.
5x-13-3x^{2}+15x=18
15x ni ikki tarafga qo’shing.
20x-13-3x^{2}=18
20x ni olish uchun 5x va 15x ni birlashtirish.
20x-13-3x^{2}-18=0
Ikkala tarafdan 18 ni ayirish.
20x-31-3x^{2}=0
-31 olish uchun -13 dan 18 ni ayirish.
-3x^{2}+20x-31=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-20±\sqrt{20^{2}-4\left(-3\right)\left(-31\right)}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 20 ni b va -31 ni c bilan almashtiring.
x=\frac{-20±\sqrt{400-4\left(-3\right)\left(-31\right)}}{2\left(-3\right)}
20 kvadratini chiqarish.
x=\frac{-20±\sqrt{400+12\left(-31\right)}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{400-372}}{2\left(-3\right)}
12 ni -31 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{28}}{2\left(-3\right)}
400 ni -372 ga qo'shish.
x=\frac{-20±2\sqrt{7}}{2\left(-3\right)}
28 ning kvadrat ildizini chiqarish.
x=\frac{-20±2\sqrt{7}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{2\sqrt{7}-20}{-6}
x=\frac{-20±2\sqrt{7}}{-6} tenglamasini yeching, bunda ± musbat. -20 ni 2\sqrt{7} ga qo'shish.
x=\frac{10-\sqrt{7}}{3}
-20+2\sqrt{7} ni -6 ga bo'lish.
x=\frac{-2\sqrt{7}-20}{-6}
x=\frac{-20±2\sqrt{7}}{-6} tenglamasini yeching, bunda ± manfiy. -20 dan 2\sqrt{7} ni ayirish.
x=\frac{\sqrt{7}+10}{3}
-20-2\sqrt{7} ni -6 ga bo'lish.
x=\frac{10-\sqrt{7}}{3} x=\frac{\sqrt{7}+10}{3}
Tenglama yechildi.
\left(x-2\right)\times 2+\left(x-3\right)\times 3=3\left(x-3\right)\left(x-2\right)
x qiymati 2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right) ga, x-3,x-2 ning eng kichik karralisiga ko‘paytiring.
2x-4+\left(x-3\right)\times 3=3\left(x-3\right)\left(x-2\right)
x-2 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x-4+3x-9=3\left(x-3\right)\left(x-2\right)
x-3 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x-4-9=3\left(x-3\right)\left(x-2\right)
5x ni olish uchun 2x va 3x ni birlashtirish.
5x-13=3\left(x-3\right)\left(x-2\right)
-13 olish uchun -4 dan 9 ni ayirish.
5x-13=\left(3x-9\right)\left(x-2\right)
3 ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5x-13=3x^{2}-15x+18
3x-9 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5x-13-3x^{2}=-15x+18
Ikkala tarafdan 3x^{2} ni ayirish.
5x-13-3x^{2}+15x=18
15x ni ikki tarafga qo’shing.
20x-13-3x^{2}=18
20x ni olish uchun 5x va 15x ni birlashtirish.
20x-3x^{2}=18+13
13 ni ikki tarafga qo’shing.
20x-3x^{2}=31
31 olish uchun 18 va 13'ni qo'shing.
-3x^{2}+20x=31
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-3x^{2}+20x}{-3}=\frac{31}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\frac{20}{-3}x=\frac{31}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{20}{3}x=\frac{31}{-3}
20 ni -3 ga bo'lish.
x^{2}-\frac{20}{3}x=-\frac{31}{3}
31 ni -3 ga bo'lish.
x^{2}-\frac{20}{3}x+\left(-\frac{10}{3}\right)^{2}=-\frac{31}{3}+\left(-\frac{10}{3}\right)^{2}
-\frac{20}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{10}{3} olish uchun. Keyin, -\frac{10}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{20}{3}x+\frac{100}{9}=-\frac{31}{3}+\frac{100}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{10}{3} kvadratini chiqarish.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{7}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{31}{3} ni \frac{100}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{10}{3}\right)^{2}=\frac{7}{9}
x^{2}-\frac{20}{3}x+\frac{100}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{10}{3}\right)^{2}}=\sqrt{\frac{7}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{10}{3}=\frac{\sqrt{7}}{3} x-\frac{10}{3}=-\frac{\sqrt{7}}{3}
Qisqartirish.
x=\frac{\sqrt{7}+10}{3} x=\frac{10-\sqrt{7}}{3}
\frac{10}{3} ni tenglamaning ikkala tarafiga qo'shish.