Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x+2 va x-3 ning eng kichik umumiy karralisi \left(x-3\right)\left(x+2\right). \frac{2}{x+2} ni \frac{x-3}{x-3} marotabaga ko'paytirish. \frac{7}{x-3} ni \frac{x+2}{x+2} marotabaga ko'paytirish.
\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} va \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)}
2\left(x-3\right)-7\left(x+2\right) ichidagi ko‘paytirishlarni bajaring.
\frac{-5x-20}{\left(x-3\right)\left(x+2\right)}
2x-6-7x-14 kabi iboralarga o‘xshab birlashtiring.
\frac{-5x-20}{x^{2}-x-6}
\left(x-3\right)\left(x+2\right) ni kengaytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x+2 va x-3 ning eng kichik umumiy karralisi \left(x-3\right)\left(x+2\right). \frac{2}{x+2} ni \frac{x-3}{x-3} marotabaga ko'paytirish. \frac{7}{x-3} ni \frac{x+2}{x+2} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} va \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)})
2\left(x-3\right)-7\left(x+2\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{\left(x-3\right)\left(x+2\right)})
2x-6-7x-14 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}+2x-3x-6})
x-3 ifodaning har bir elementini x+2 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}-x-6})
-x ni olish uchun 2x va -3x ni birlashtirish.
\frac{\left(x^{2}-x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{1}-20)-\left(-5x^{1}-20\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-6)}{\left(x^{2}-x^{1}-6\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{1-1}-\left(-5x^{1}-20\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Qisqartirish.
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
x^{2}-x^{1}-6 ni -5x^{0} marotabaga ko'paytirish.
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}\times 2x^{1}-5x^{1}\left(-1\right)x^{0}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
-5x^{1}-20 ni 2x^{1}-x^{0} marotabaga ko'paytirish.
\frac{-5x^{2}-\left(-5x^{1}\right)-6\left(-5\right)x^{0}-\left(-5\times 2x^{1+1}-5\left(-1\right)x^{1}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{-5x^{2}+5x^{1}+30x^{0}-\left(-10x^{2}+5x^{1}-40x^{1}+20x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Qisqartirish.
\frac{5x^{2}+40x^{1}+10x^{0}}{\left(x^{2}-x^{1}-6\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{5x^{2}+40x+10x^{0}}{\left(x^{2}-x-6\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{5x^{2}+40x+10\times 1}{\left(x^{2}-x-6\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{5x^{2}+40x+10}{\left(x^{2}-x-6\right)^{2}}
Har qanday t sharti uchun t\times 1=t va 1t=t.