Baholash
\frac{\sqrt{3}+5}{11}\approx 0,612004619
Baham ko'rish
Klipbordga nusxa olish
\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}
\frac{2}{5-\sqrt{3}} maxrajini 5+\sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{2\left(5+\sqrt{3}\right)}{5^{2}-\left(\sqrt{3}\right)^{2}}
Hisoblang: \left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(5+\sqrt{3}\right)}{25-3}
5 kvadratini chiqarish. \sqrt{3} kvadratini chiqarish.
\frac{2\left(5+\sqrt{3}\right)}{22}
22 olish uchun 25 dan 3 ni ayirish.
\frac{1}{11}\left(5+\sqrt{3}\right)
\frac{1}{11}\left(5+\sqrt{3}\right) ni olish uchun 2\left(5+\sqrt{3}\right) ni 22 ga bo‘ling.
\frac{1}{11}\times 5+\frac{1}{11}\sqrt{3}
\frac{1}{11} ga 5+\sqrt{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{5}{11}+\frac{1}{11}\sqrt{3}
\frac{5}{11} hosil qilish uchun \frac{1}{11} va 5 ni ko'paytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}