x uchun yechish
x=\sqrt{57}+7\approx 14,549834435
x=7-\sqrt{57}\approx -0,549834435
Grafik
Baham ko'rish
Klipbordga nusxa olish
6x\times 2+\left(2x+4\right)\times 2=x\left(x+2\right)
x qiymati -2,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 30x\left(x+2\right) ga, 5\left(x+2\right),15x,30 ning eng kichik karralisiga ko‘paytiring.
12x+\left(2x+4\right)\times 2=x\left(x+2\right)
12 hosil qilish uchun 6 va 2 ni ko'paytirish.
12x+4x+8=x\left(x+2\right)
2x+4 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16x+8=x\left(x+2\right)
16x ni olish uchun 12x va 4x ni birlashtirish.
16x+8=x^{2}+2x
x ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16x+8-x^{2}=2x
Ikkala tarafdan x^{2} ni ayirish.
16x+8-x^{2}-2x=0
Ikkala tarafdan 2x ni ayirish.
14x+8-x^{2}=0
14x ni olish uchun 16x va -2x ni birlashtirish.
-x^{2}+14x+8=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-14±\sqrt{14^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 14 ni b va 8 ni c bilan almashtiring.
x=\frac{-14±\sqrt{196-4\left(-1\right)\times 8}}{2\left(-1\right)}
14 kvadratini chiqarish.
x=\frac{-14±\sqrt{196+4\times 8}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{196+32}}{2\left(-1\right)}
4 ni 8 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{228}}{2\left(-1\right)}
196 ni 32 ga qo'shish.
x=\frac{-14±2\sqrt{57}}{2\left(-1\right)}
228 ning kvadrat ildizini chiqarish.
x=\frac{-14±2\sqrt{57}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{57}-14}{-2}
x=\frac{-14±2\sqrt{57}}{-2} tenglamasini yeching, bunda ± musbat. -14 ni 2\sqrt{57} ga qo'shish.
x=7-\sqrt{57}
-14+2\sqrt{57} ni -2 ga bo'lish.
x=\frac{-2\sqrt{57}-14}{-2}
x=\frac{-14±2\sqrt{57}}{-2} tenglamasini yeching, bunda ± manfiy. -14 dan 2\sqrt{57} ni ayirish.
x=\sqrt{57}+7
-14-2\sqrt{57} ni -2 ga bo'lish.
x=7-\sqrt{57} x=\sqrt{57}+7
Tenglama yechildi.
6x\times 2+\left(2x+4\right)\times 2=x\left(x+2\right)
x qiymati -2,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 30x\left(x+2\right) ga, 5\left(x+2\right),15x,30 ning eng kichik karralisiga ko‘paytiring.
12x+\left(2x+4\right)\times 2=x\left(x+2\right)
12 hosil qilish uchun 6 va 2 ni ko'paytirish.
12x+4x+8=x\left(x+2\right)
2x+4 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16x+8=x\left(x+2\right)
16x ni olish uchun 12x va 4x ni birlashtirish.
16x+8=x^{2}+2x
x ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16x+8-x^{2}=2x
Ikkala tarafdan x^{2} ni ayirish.
16x+8-x^{2}-2x=0
Ikkala tarafdan 2x ni ayirish.
14x+8-x^{2}=0
14x ni olish uchun 16x va -2x ni birlashtirish.
14x-x^{2}=-8
Ikkala tarafdan 8 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-x^{2}+14x=-8
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+14x}{-1}=-\frac{8}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{14}{-1}x=-\frac{8}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-14x=-\frac{8}{-1}
14 ni -1 ga bo'lish.
x^{2}-14x=8
-8 ni -1 ga bo'lish.
x^{2}-14x+\left(-7\right)^{2}=8+\left(-7\right)^{2}
-14 ni bo‘lish, x shartining koeffitsienti, 2 ga -7 olish uchun. Keyin, -7 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-14x+49=8+49
-7 kvadratini chiqarish.
x^{2}-14x+49=57
8 ni 49 ga qo'shish.
\left(x-7\right)^{2}=57
x^{2}-14x+49 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-7\right)^{2}}=\sqrt{57}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-7=\sqrt{57} x-7=-\sqrt{57}
Qisqartirish.
x=\sqrt{57}+7 x=7-\sqrt{57}
7 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}