Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{180}{360}x^{2}=50
\pi ni ikki tarafidan bekor qilish.
\frac{1}{2}x^{2}=50
\frac{180}{360} ulushini 180 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{2}x^{2}-50=0
Ikkala tarafdan 50 ni ayirish.
x^{2}-100=0
Ikkala tarafini 2 ga ko‘paytiring.
\left(x-10\right)\left(x+10\right)=0
Hisoblang: x^{2}-100. x^{2}-100 ni x^{2}-10^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=10 x=-10
Tenglamani yechish uchun x-10=0 va x+10=0 ni yeching.
\frac{180}{360}x^{2}=50
\pi ni ikki tarafidan bekor qilish.
\frac{1}{2}x^{2}=50
\frac{180}{360} ulushini 180 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}=50\times 2
Ikki tarafini 2 va teskari kasri \frac{1}{2} ga ko‘paytiring.
x^{2}=100
100 hosil qilish uchun 50 va 2 ni ko'paytirish.
x=10 x=-10
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\frac{180}{360}x^{2}=50
\pi ni ikki tarafidan bekor qilish.
\frac{1}{2}x^{2}=50
\frac{180}{360} ulushini 180 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{2}x^{2}-50=0
Ikkala tarafdan 50 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times \frac{1}{2}\left(-50\right)}}{2\times \frac{1}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{2} ni a, 0 ni b va -50 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times \frac{1}{2}\left(-50\right)}}{2\times \frac{1}{2}}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-2\left(-50\right)}}{2\times \frac{1}{2}}
-4 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{0±\sqrt{100}}{2\times \frac{1}{2}}
-2 ni -50 marotabaga ko'paytirish.
x=\frac{0±10}{2\times \frac{1}{2}}
100 ning kvadrat ildizini chiqarish.
x=\frac{0±10}{1}
2 ni \frac{1}{2} marotabaga ko'paytirish.
x=10
x=\frac{0±10}{1} tenglamasini yeching, bunda ± musbat.
x=-10
x=\frac{0±10}{1} tenglamasini yeching, bunda ± manfiy.
x=10 x=-10
Tenglama yechildi.