Baholash
-\frac{d^{9}}{2}
d ga nisbatan hosilani topish
-\frac{9d^{8}}{2}
Baham ko'rish
Klipbordga nusxa olish
\frac{13^{1}c^{9}d^{10}}{\left(-26\right)^{1}c^{9}d^{1}}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
\frac{13^{1}}{\left(-26\right)^{1}}c^{9-9}d^{10-1}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{13^{1}}{\left(-26\right)^{1}}c^{0}d^{10-1}
9 dan 9 ni ayirish.
\frac{13^{1}}{\left(-26\right)^{1}}d^{10-1}
Har qanday a raqami uchun (0 bundan mustasno) a^{0}=1.
\frac{13^{1}}{\left(-26\right)^{1}}d^{9}
10 dan 1 ni ayirish.
-\frac{1}{2}d^{9}
\frac{13}{-26} ulushini 13 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{d^{9}}{-2})
Surat va maxrajdagi ikkala 13dc^{9} ni qisqartiring.
9\left(-\frac{1}{2}\right)d^{9-1}
ax^{n} hosilasi – nax^{n-1}.
-\frac{9}{2}d^{9-1}
9 ni -\frac{1}{2} marotabaga ko'paytirish.
-\frac{9}{2}d^{8}
9 dan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}