k uchun yechish
k=\frac{x}{\pi }-\frac{1}{3}
x uchun yechish
x=\pi k+\frac{\pi }{3}
Grafik
Baham ko'rish
Klipbordga nusxa olish
12x-\pi =3\pi +12k\pi
Tenglamaning ikkala tarafini 6 ga, 6,2 ning eng kichik karralisiga ko‘paytiring.
3\pi +12k\pi =12x-\pi
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
12k\pi =12x-\pi -3\pi
Ikkala tarafdan 3\pi ni ayirish.
12k\pi =12x-4\pi
-4\pi ni olish uchun -\pi va -3\pi ni birlashtirish.
12\pi k=12x-4\pi
Tenglama standart shaklda.
\frac{12\pi k}{12\pi }=\frac{12x-4\pi }{12\pi }
Ikki tarafini 12\pi ga bo‘ling.
k=\frac{12x-4\pi }{12\pi }
12\pi ga bo'lish 12\pi ga ko'paytirishni bekor qiladi.
k=\frac{x}{\pi }-\frac{1}{3}
12x-4\pi ni 12\pi ga bo'lish.
12x-\pi =3\pi +12k\pi
Tenglamaning ikkala tarafini 6 ga, 6,2 ning eng kichik karralisiga ko‘paytiring.
12x=3\pi +12k\pi +\pi
\pi ni ikki tarafga qo’shing.
12x=4\pi +12k\pi
4\pi ni olish uchun 3\pi va \pi ni birlashtirish.
12x=12\pi k+4\pi
Tenglama standart shaklda.
\frac{12x}{12}=\frac{12\pi k+4\pi }{12}
Ikki tarafini 12 ga bo‘ling.
x=\frac{12\pi k+4\pi }{12}
12 ga bo'lish 12 ga ko'paytirishni bekor qiladi.
x=\pi k+\frac{\pi }{3}
4\pi +12\pi k ni 12 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}