Baholash
\frac{825\sqrt{3}-1485}{2}\approx -28,029041878
Omil
\frac{165 {(5 \sqrt{3} - 9)}}{2} = -28,029041877838196
Baham ko'rish
Klipbordga nusxa olish
\frac{12\left(-55\right)}{12+\frac{2\times 10}{\sqrt{3}}}
-55 olish uchun 120 dan 175 ni ayirish.
\frac{-660}{12+\frac{2\times 10}{\sqrt{3}}}
-660 hosil qilish uchun 12 va -55 ni ko'paytirish.
\frac{-660}{12+\frac{20}{\sqrt{3}}}
20 hosil qilish uchun 2 va 10 ni ko'paytirish.
\frac{-660}{12+\frac{20\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
\frac{20}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{-660}{12+\frac{20\sqrt{3}}{3}}
\sqrt{3} kvadrati – 3.
\frac{-660}{\frac{12\times 3}{3}+\frac{20\sqrt{3}}{3}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 12 ni \frac{3}{3} marotabaga ko'paytirish.
\frac{-660}{\frac{12\times 3+20\sqrt{3}}{3}}
\frac{12\times 3}{3} va \frac{20\sqrt{3}}{3} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{-660}{\frac{36+20\sqrt{3}}{3}}
12\times 3+20\sqrt{3} ichidagi ko‘paytirishlarni bajaring.
\frac{-660\times 3}{36+20\sqrt{3}}
-660 ni \frac{36+20\sqrt{3}}{3} ga bo'lish -660 ga k'paytirish \frac{36+20\sqrt{3}}{3} ga qaytarish.
\frac{-660\times 3\left(36-20\sqrt{3}\right)}{\left(36+20\sqrt{3}\right)\left(36-20\sqrt{3}\right)}
\frac{-660\times 3}{36+20\sqrt{3}} maxrajini 36-20\sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{-660\times 3\left(36-20\sqrt{3}\right)}{36^{2}-\left(20\sqrt{3}\right)^{2}}
Hisoblang: \left(36+20\sqrt{3}\right)\left(36-20\sqrt{3}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-1980\left(36-20\sqrt{3}\right)}{36^{2}-\left(20\sqrt{3}\right)^{2}}
-1980 hosil qilish uchun -660 va 3 ni ko'paytirish.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-\left(20\sqrt{3}\right)^{2}}
2 daraja ko‘rsatkichini 36 ga hisoblang va 1296 ni qiymatni oling.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-20^{2}\left(\sqrt{3}\right)^{2}}
\left(20\sqrt{3}\right)^{2} ni kengaytirish.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-400\left(\sqrt{3}\right)^{2}}
2 daraja ko‘rsatkichini 20 ga hisoblang va 400 ni qiymatni oling.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-400\times 3}
\sqrt{3} kvadrati – 3.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-1200}
1200 hosil qilish uchun 400 va 3 ni ko'paytirish.
\frac{-1980\left(36-20\sqrt{3}\right)}{96}
96 olish uchun 1296 dan 1200 ni ayirish.
-\frac{165}{8}\left(36-20\sqrt{3}\right)
-\frac{165}{8}\left(36-20\sqrt{3}\right) ni olish uchun -1980\left(36-20\sqrt{3}\right) ni 96 ga bo‘ling.
-\frac{165}{8}\times 36-\frac{165}{8}\left(-20\right)\sqrt{3}
-\frac{165}{8} ga 36-20\sqrt{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{-165\times 36}{8}-\frac{165}{8}\left(-20\right)\sqrt{3}
-\frac{165}{8}\times 36 ni yagona kasrga aylantiring.
\frac{-5940}{8}-\frac{165}{8}\left(-20\right)\sqrt{3}
-5940 hosil qilish uchun -165 va 36 ni ko'paytirish.
-\frac{1485}{2}-\frac{165}{8}\left(-20\right)\sqrt{3}
\frac{-5940}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
-\frac{1485}{2}+\frac{-165\left(-20\right)}{8}\sqrt{3}
-\frac{165}{8}\left(-20\right) ni yagona kasrga aylantiring.
-\frac{1485}{2}+\frac{3300}{8}\sqrt{3}
3300 hosil qilish uchun -165 va -20 ni ko'paytirish.
-\frac{1485}{2}+\frac{825}{2}\sqrt{3}
\frac{3300}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}