x uchun yechish
x=-50\sqrt{3}-150\approx -236,602540378
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{100\sqrt{3}\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}=x
\frac{100\sqrt{3}}{1-\sqrt{3}} maxrajini 1+\sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{100\sqrt{3}\left(1+\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}=x
Hisoblang: \left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{100\sqrt{3}\left(1+\sqrt{3}\right)}{1-3}=x
1 kvadratini chiqarish. \sqrt{3} kvadratini chiqarish.
\frac{100\sqrt{3}\left(1+\sqrt{3}\right)}{-2}=x
-2 olish uchun 1 dan 3 ni ayirish.
\frac{100\sqrt{3}+100\left(\sqrt{3}\right)^{2}}{-2}=x
100\sqrt{3} ga 1+\sqrt{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{100\sqrt{3}+100\times 3}{-2}=x
\sqrt{3} kvadrati – 3.
\frac{100\sqrt{3}+300}{-2}=x
300 hosil qilish uchun 100 va 3 ni ko'paytirish.
-50\sqrt{3}-150=x
-50\sqrt{3}-150 natijani olish uchun 100\sqrt{3}+300 ning har bir ifodasini -2 ga bo‘ling.
x=-50\sqrt{3}-150
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}