Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(1+x\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=1
\frac{1+x}{\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(1+x\right)\sqrt{2}}{2}=1
\sqrt{2} kvadrati – 2.
\frac{\sqrt{2}+x\sqrt{2}}{2}=1
1+x ga \sqrt{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\sqrt{2}+x\sqrt{2}=2
Ikkala tarafini 2 ga ko‘paytiring.
x\sqrt{2}=2-\sqrt{2}
Ikkala tarafdan \sqrt{2} ni ayirish.
\sqrt{2}x=2-\sqrt{2}
Tenglama standart shaklda.
\frac{\sqrt{2}x}{\sqrt{2}}=\frac{2-\sqrt{2}}{\sqrt{2}}
Ikki tarafini \sqrt{2} ga bo‘ling.
x=\frac{2-\sqrt{2}}{\sqrt{2}}
\sqrt{2} ga bo'lish \sqrt{2} ga ko'paytirishni bekor qiladi.
x=\sqrt{2}-1
2-\sqrt{2} ni \sqrt{2} ga bo'lish.