x uchun yechish
x=\sqrt{2}-1\approx 0,414213562
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(1+x\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=1
\frac{1+x}{\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(1+x\right)\sqrt{2}}{2}=1
\sqrt{2} kvadrati – 2.
\frac{\sqrt{2}+x\sqrt{2}}{2}=1
1+x ga \sqrt{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\sqrt{2}+x\sqrt{2}=2
Ikkala tarafini 2 ga ko‘paytiring.
x\sqrt{2}=2-\sqrt{2}
Ikkala tarafdan \sqrt{2} ni ayirish.
\sqrt{2}x=2-\sqrt{2}
Tenglama standart shaklda.
\frac{\sqrt{2}x}{\sqrt{2}}=\frac{2-\sqrt{2}}{\sqrt{2}}
Ikki tarafini \sqrt{2} ga bo‘ling.
x=\frac{2-\sqrt{2}}{\sqrt{2}}
\sqrt{2} ga bo'lish \sqrt{2} ga ko'paytirishni bekor qiladi.
x=\sqrt{2}-1
2-\sqrt{2} ni \sqrt{2} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}