Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{x-2}{\left(x+1\right)x}
\frac{1}{x+1} ni \frac{x}{x-2} ga bo'lish \frac{1}{x+1} ga k'paytirish \frac{x}{x-2} ga qaytarish.
\frac{x-2}{x^{2}+x}
x+1 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-2}{\left(x+1\right)x})
\frac{1}{x+1} ni \frac{x}{x-2} ga bo'lish \frac{1}{x+1} ga k'paytirish \frac{x}{x-2} ga qaytarish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-2}{x^{2}+x})
x+1 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\left(x^{2}+x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-2)-\left(x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1})}{\left(x^{2}+x^{1}\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{2}+x^{1}\right)x^{1-1}-\left(x^{1}-2\right)\left(2x^{2-1}+x^{1-1}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{2}+x^{1}\right)x^{0}-\left(x^{1}-2\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Qisqartirish.
\frac{x^{2}x^{0}+x^{1}x^{0}-\left(x^{1}-2\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
x^{2}+x^{1} ni x^{0} marotabaga ko'paytirish.
\frac{x^{2}x^{0}+x^{1}x^{0}-\left(x^{1}\times 2x^{1}+x^{1}x^{0}-2\times 2x^{1}-2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
x^{1}-2 ni 2x^{1}+x^{0} marotabaga ko'paytirish.
\frac{x^{2}+x^{1}-\left(2x^{1+1}+x^{1}-2\times 2x^{1}-2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{x^{2}+x^{1}-\left(2x^{2}+x^{1}-4x^{1}-2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Qisqartirish.
\frac{-x^{2}+4x^{1}+2x^{0}}{\left(x^{2}+x^{1}\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{-x^{2}+4x+2x^{0}}{\left(x^{2}+x\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{-x^{2}+4x+2\times 1}{\left(x^{2}+x\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{-x^{2}+4x+2}{\left(x^{2}+x\right)^{2}}
Har qanday t sharti uchun t\times 1=t va 1t=t.