Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x-2-x=3x\left(x-2\right)
x qiymati 0,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x-2\right) ga, x,x-2 ning eng kichik karralisiga ko‘paytiring.
x-2-x=3x^{2}-6x
3x ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x-2-x-3x^{2}=-6x
Ikkala tarafdan 3x^{2} ni ayirish.
x-2-x-3x^{2}+6x=0
6x ni ikki tarafga qo’shing.
7x-2-x-3x^{2}=0
7x ni olish uchun x va 6x ni birlashtirish.
6x-2-3x^{2}=0
6x ni olish uchun 7x va -x ni birlashtirish.
-3x^{2}+6x-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{6^{2}-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 6 ni b va -2 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36+12\left(-2\right)}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36-24}}{2\left(-3\right)}
12 ni -2 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{12}}{2\left(-3\right)}
36 ni -24 ga qo'shish.
x=\frac{-6±2\sqrt{3}}{2\left(-3\right)}
12 ning kvadrat ildizini chiqarish.
x=\frac{-6±2\sqrt{3}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{2\sqrt{3}-6}{-6}
x=\frac{-6±2\sqrt{3}}{-6} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{3} ga qo'shish.
x=-\frac{\sqrt{3}}{3}+1
-6+2\sqrt{3} ni -6 ga bo'lish.
x=\frac{-2\sqrt{3}-6}{-6}
x=\frac{-6±2\sqrt{3}}{-6} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{3} ni ayirish.
x=\frac{\sqrt{3}}{3}+1
-6-2\sqrt{3} ni -6 ga bo'lish.
x=-\frac{\sqrt{3}}{3}+1 x=\frac{\sqrt{3}}{3}+1
Tenglama yechildi.
x-2-x=3x\left(x-2\right)
x qiymati 0,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x-2\right) ga, x,x-2 ning eng kichik karralisiga ko‘paytiring.
x-2-x=3x^{2}-6x
3x ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x-2-x-3x^{2}=-6x
Ikkala tarafdan 3x^{2} ni ayirish.
x-2-x-3x^{2}+6x=0
6x ni ikki tarafga qo’shing.
7x-2-x-3x^{2}=0
7x ni olish uchun x va 6x ni birlashtirish.
7x-x-3x^{2}=2
2 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
6x-3x^{2}=2
6x ni olish uchun 7x va -x ni birlashtirish.
-3x^{2}+6x=2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-3x^{2}+6x}{-3}=\frac{2}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\frac{6}{-3}x=\frac{2}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}-2x=\frac{2}{-3}
6 ni -3 ga bo'lish.
x^{2}-2x=-\frac{2}{3}
2 ni -3 ga bo'lish.
x^{2}-2x+1=-\frac{2}{3}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=\frac{1}{3}
-\frac{2}{3} ni 1 ga qo'shish.
\left(x-1\right)^{2}=\frac{1}{3}
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{1}{3}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\frac{\sqrt{3}}{3} x-1=-\frac{\sqrt{3}}{3}
Qisqartirish.
x=\frac{\sqrt{3}}{3}+1 x=-\frac{\sqrt{3}}{3}+1
1 ni tenglamaning ikkala tarafiga qo'shish.