Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{9}x^{2}+x+\frac{9}{4}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{9}\times \frac{9}{4}}}{2\times \frac{1}{9}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{9} ni a, 1 ni b va \frac{9}{4} ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\times \frac{1}{9}\times \frac{9}{4}}}{2\times \frac{1}{9}}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1-\frac{4}{9}\times \frac{9}{4}}}{2\times \frac{1}{9}}
-4 ni \frac{1}{9} marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1-1}}{2\times \frac{1}{9}}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali -\frac{4}{9} ni \frac{9}{4} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
x=\frac{-1±\sqrt{0}}{2\times \frac{1}{9}}
1 ni -1 ga qo'shish.
x=-\frac{1}{2\times \frac{1}{9}}
0 ning kvadrat ildizini chiqarish.
x=-\frac{1}{\frac{2}{9}}
2 ni \frac{1}{9} marotabaga ko'paytirish.
x=-\frac{9}{2}
-1 ni \frac{2}{9} ga bo'lish -1 ga k'paytirish \frac{2}{9} ga qaytarish.
\frac{1}{9}x^{2}+x+\frac{9}{4}=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{1}{9}x^{2}+x+\frac{9}{4}-\frac{9}{4}=-\frac{9}{4}
Tenglamaning ikkala tarafidan \frac{9}{4} ni ayirish.
\frac{1}{9}x^{2}+x=-\frac{9}{4}
O‘zidan \frac{9}{4} ayirilsa 0 qoladi.
\frac{\frac{1}{9}x^{2}+x}{\frac{1}{9}}=-\frac{\frac{9}{4}}{\frac{1}{9}}
Ikkala tarafini 9 ga ko‘paytiring.
x^{2}+\frac{1}{\frac{1}{9}}x=-\frac{\frac{9}{4}}{\frac{1}{9}}
\frac{1}{9} ga bo'lish \frac{1}{9} ga ko'paytirishni bekor qiladi.
x^{2}+9x=-\frac{\frac{9}{4}}{\frac{1}{9}}
1 ni \frac{1}{9} ga bo'lish 1 ga k'paytirish \frac{1}{9} ga qaytarish.
x^{2}+9x=-\frac{81}{4}
-\frac{9}{4} ni \frac{1}{9} ga bo'lish -\frac{9}{4} ga k'paytirish \frac{1}{9} ga qaytarish.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=-\frac{81}{4}+\left(\frac{9}{2}\right)^{2}
9 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{2} olish uchun. Keyin, \frac{9}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+9x+\frac{81}{4}=\frac{-81+81}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{2} kvadratini chiqarish.
x^{2}+9x+\frac{81}{4}=0
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{81}{4} ni \frac{81}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{9}{2}\right)^{2}=0
x^{2}+9x+\frac{81}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{0}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{9}{2}=0 x+\frac{9}{2}=0
Qisqartirish.
x=-\frac{9}{2} x=-\frac{9}{2}
Tenglamaning ikkala tarafidan \frac{9}{2} ni ayirish.
x=-\frac{9}{2}
Tenglama yechildi. Yechimlar bir xil.