Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{6}\left(4x+5\right)\left(-\frac{2}{3}\right)\left(2x+7\right)=\frac{3}{2}
\frac{-2}{3} kasri manfiy belgini olib tashlash bilan -\frac{2}{3} sifatida qayta yozilishi mumkin.
-\frac{1}{9}\left(4x+5\right)\left(2x+7\right)=\frac{3}{2}
-\frac{1}{9} hosil qilish uchun \frac{1}{6} va -\frac{2}{3} ni ko'paytirish.
\left(-\frac{4}{9}x-\frac{5}{9}\right)\left(2x+7\right)=\frac{3}{2}
-\frac{1}{9} ga 4x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{8}{9}x^{2}-\frac{38}{9}x-\frac{35}{9}=\frac{3}{2}
-\frac{4}{9}x-\frac{5}{9} ga 2x+7 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-\frac{8}{9}x^{2}-\frac{38}{9}x-\frac{35}{9}-\frac{3}{2}=0
Ikkala tarafdan \frac{3}{2} ni ayirish.
-\frac{8}{9}x^{2}-\frac{38}{9}x-\frac{97}{18}=0
-\frac{97}{18} olish uchun -\frac{35}{9} dan \frac{3}{2} ni ayirish.
x=\frac{-\left(-\frac{38}{9}\right)±\sqrt{\left(-\frac{38}{9}\right)^{2}-4\left(-\frac{8}{9}\right)\left(-\frac{97}{18}\right)}}{2\left(-\frac{8}{9}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{8}{9} ni a, -\frac{38}{9} ni b va -\frac{97}{18} ni c bilan almashtiring.
x=\frac{-\left(-\frac{38}{9}\right)±\sqrt{\frac{1444}{81}-4\left(-\frac{8}{9}\right)\left(-\frac{97}{18}\right)}}{2\left(-\frac{8}{9}\right)}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{38}{9} kvadratini chiqarish.
x=\frac{-\left(-\frac{38}{9}\right)±\sqrt{\frac{1444}{81}+\frac{32}{9}\left(-\frac{97}{18}\right)}}{2\left(-\frac{8}{9}\right)}
-4 ni -\frac{8}{9} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{38}{9}\right)±\sqrt{\frac{1444-1552}{81}}}{2\left(-\frac{8}{9}\right)}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{32}{9} ni -\frac{97}{18} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
x=\frac{-\left(-\frac{38}{9}\right)±\sqrt{-\frac{4}{3}}}{2\left(-\frac{8}{9}\right)}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1444}{81} ni -\frac{1552}{81} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{-\left(-\frac{38}{9}\right)±\frac{2\sqrt{3}i}{3}}{2\left(-\frac{8}{9}\right)}
-\frac{4}{3} ning kvadrat ildizini chiqarish.
x=\frac{\frac{38}{9}±\frac{2\sqrt{3}i}{3}}{2\left(-\frac{8}{9}\right)}
-\frac{38}{9} ning teskarisi \frac{38}{9} ga teng.
x=\frac{\frac{38}{9}±\frac{2\sqrt{3}i}{3}}{-\frac{16}{9}}
2 ni -\frac{8}{9} marotabaga ko'paytirish.
x=\frac{\frac{2\sqrt{3}i}{3}+\frac{38}{9}}{-\frac{16}{9}}
x=\frac{\frac{38}{9}±\frac{2\sqrt{3}i}{3}}{-\frac{16}{9}} tenglamasini yeching, bunda ± musbat. \frac{38}{9} ni \frac{2i\sqrt{3}}{3} ga qo'shish.
x=\frac{-3\sqrt{3}i-19}{8}
\frac{38}{9}+\frac{2i\sqrt{3}}{3} ni -\frac{16}{9} ga bo'lish \frac{38}{9}+\frac{2i\sqrt{3}}{3} ga k'paytirish -\frac{16}{9} ga qaytarish.
x=\frac{-\frac{2\sqrt{3}i}{3}+\frac{38}{9}}{-\frac{16}{9}}
x=\frac{\frac{38}{9}±\frac{2\sqrt{3}i}{3}}{-\frac{16}{9}} tenglamasini yeching, bunda ± manfiy. \frac{38}{9} dan \frac{2i\sqrt{3}}{3} ni ayirish.
x=\frac{-19+3\sqrt{3}i}{8}
\frac{38}{9}-\frac{2i\sqrt{3}}{3} ni -\frac{16}{9} ga bo'lish \frac{38}{9}-\frac{2i\sqrt{3}}{3} ga k'paytirish -\frac{16}{9} ga qaytarish.
x=\frac{-3\sqrt{3}i-19}{8} x=\frac{-19+3\sqrt{3}i}{8}
Tenglama yechildi.
\frac{1}{6}\left(4x+5\right)\left(-\frac{2}{3}\right)\left(2x+7\right)=\frac{3}{2}
\frac{-2}{3} kasri manfiy belgini olib tashlash bilan -\frac{2}{3} sifatida qayta yozilishi mumkin.
-\frac{1}{9}\left(4x+5\right)\left(2x+7\right)=\frac{3}{2}
-\frac{1}{9} hosil qilish uchun \frac{1}{6} va -\frac{2}{3} ni ko'paytirish.
\left(-\frac{4}{9}x-\frac{5}{9}\right)\left(2x+7\right)=\frac{3}{2}
-\frac{1}{9} ga 4x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{8}{9}x^{2}-\frac{38}{9}x-\frac{35}{9}=\frac{3}{2}
-\frac{4}{9}x-\frac{5}{9} ga 2x+7 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-\frac{8}{9}x^{2}-\frac{38}{9}x=\frac{3}{2}+\frac{35}{9}
\frac{35}{9} ni ikki tarafga qo’shing.
-\frac{8}{9}x^{2}-\frac{38}{9}x=\frac{97}{18}
\frac{97}{18} olish uchun \frac{3}{2} va \frac{35}{9}'ni qo'shing.
\frac{-\frac{8}{9}x^{2}-\frac{38}{9}x}{-\frac{8}{9}}=\frac{\frac{97}{18}}{-\frac{8}{9}}
Tenglamaning ikki tarafini -\frac{8}{9} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x^{2}+\left(-\frac{\frac{38}{9}}{-\frac{8}{9}}\right)x=\frac{\frac{97}{18}}{-\frac{8}{9}}
-\frac{8}{9} ga bo'lish -\frac{8}{9} ga ko'paytirishni bekor qiladi.
x^{2}+\frac{19}{4}x=\frac{\frac{97}{18}}{-\frac{8}{9}}
-\frac{38}{9} ni -\frac{8}{9} ga bo'lish -\frac{38}{9} ga k'paytirish -\frac{8}{9} ga qaytarish.
x^{2}+\frac{19}{4}x=-\frac{97}{16}
\frac{97}{18} ni -\frac{8}{9} ga bo'lish \frac{97}{18} ga k'paytirish -\frac{8}{9} ga qaytarish.
x^{2}+\frac{19}{4}x+\left(\frac{19}{8}\right)^{2}=-\frac{97}{16}+\left(\frac{19}{8}\right)^{2}
\frac{19}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{19}{8} olish uchun. Keyin, \frac{19}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{19}{4}x+\frac{361}{64}=-\frac{97}{16}+\frac{361}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{19}{8} kvadratini chiqarish.
x^{2}+\frac{19}{4}x+\frac{361}{64}=-\frac{27}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{97}{16} ni \frac{361}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{19}{8}\right)^{2}=-\frac{27}{64}
x^{2}+\frac{19}{4}x+\frac{361}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{19}{8}\right)^{2}}=\sqrt{-\frac{27}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{19}{8}=\frac{3\sqrt{3}i}{8} x+\frac{19}{8}=-\frac{3\sqrt{3}i}{8}
Qisqartirish.
x=\frac{-19+3\sqrt{3}i}{8} x=\frac{-3\sqrt{3}i-19}{8}
Tenglamaning ikkala tarafidan \frac{19}{8} ni ayirish.